Endothelial mitochondria play a pivotal role in maintaining endothelial cell (EC) homeostasis through constantly altering their size, shape, and intracellular localization. Studies show that the disruption of the basal mitochondrial network in EC, forming excess fragmented mitochondria, implicates cardiovascular disease. However, cellular consequences underlying the morphological changes in the endothelial mitochondria under distinctively different, but physiologically occurring, flow patterns (i.
View Article and Find Full Text PDFMixed martial arts (MMA), a combat sport consisting of wrestling, boxing, and martial arts, is a popular activity associated with danger and violence. Of concern are the repetitive head impacts, both subconcussive and concussive, sustained by MMA athletes. The rules of MMA encourage head strikes, but there was no formal concussion protocol in the Ultimate Fighting Championship (UFC) until 2021.
View Article and Find Full Text PDFAlthough the hallmark of obesity is the expansion of adipose tissue, not all adipose tissue expansion is the same. Expansion of healthy adipose tissue is accompanied by adequate capillary angiogenesis and mitochondria-centered metabolic integrity, whereas expansion of unhealthy adipose tissue is associated with capillary and mitochondrial derangement, resulting in deposition of immune cells (M1-stage macrophages) and excess production of pro-inflammatory cytokines. Accumulation of these dysfunctional adipose tissues has been linked to the development of obesity comorbidities, such as type 2 diabetes, hypertension, dyslipidemia, and cardiovascular disease, which are leading causes of human mortality and morbidity in modern society.
View Article and Find Full Text PDFTumor suppressor p53 plays a pivotal role in orchestrating mitochondrial remodeling by regulating their content, fusion/fission processes, and intracellular signaling molecules that are associated with mitophagy and apoptosis pathways. In order to determine a molecular mechanism underlying flow-mediated mitochondrial remodeling in endothelial cells, we examined, herein, the role of p53 on mitochondrial adaptations to physiological flow and its relevance to vascular function using endothelial cell-specific p53 deficient mice. We observed no changes in aerobic capacity, basal blood pressure, or endothelial mitochondrial phenotypes in the endothelial p53 mull animals.
View Article and Find Full Text PDF