Diabetic kidney disease (DKD) and diabetic peripheral neuropathy (DPN) are common complications of type 1 (T1D) and type 2 (T2D) diabetes. However, the mechanisms underlying pathogenesis of these complications are unclear. In this study, we optimized a streptozotocin-induced db/+ murine model of T1D and compared it to our established db/db T2D mouse model of the same C57BLKS/J background.
View Article and Find Full Text PDFPurpose: Neurogenic inflammation is a major component of chronic neuropathic pain. Previously, we established the db/db mouse as an animal model of painful diabetic neuropathy (PDN) of type 2 diabetes. In the current study, we investigate the roles of interleukin (IL)-10, an anti-inflammatory cytokine, in the development of neurogenic inflammation and pain behavior in db/db mouse.
View Article and Find Full Text PDFPeripheral neuropathy (neuropathy) is a common complication of obesity and type 2 diabetes in children and adolescents. To model this complication in mice, 5-week-old male C57BL/6J mice were fed a high-fat diet to induce diet-induced obesity (DIO), a model of prediabetes, and a cohort of these animals was injected with low-dose streptozotocin (STZ) at 12 weeks of age to induce hyperglycemia and type 2 diabetes. Neuropathy assessments at 16, 24 and 36 weeks demonstrated that DIO and DIO-STZ mice displayed decreased motor and sensory nerve conduction velocities as early as 16 weeks, hypoalgesia by 24 weeks and cutaneous nerve fiber loss by 36 weeks, relative to control mice fed a standard diet.
View Article and Find Full Text PDFPainful neuropathy (PN) is a prevalent condition in patients with metabolic syndrome (MetS). However, the pathogenic mechanisms of metabolic syndrome-associated painful neuropathy (MetSPN) remain unclear. In the current study, high-fat-fed mice (HF mice) were used to study MetSPN.
View Article and Find Full Text PDFTo define the components of the metabolic syndrome that contribute to diabetic polyneuropathy (DPN) in type 2 diabetes mellitus (T2DM), we treated the BKS db/db mouse, an established murine model of T2DM and the metabolic syndrome, with the thiazolidinedione class drug pioglitazone. Pioglitazone treatment of BKS db/db mice produced a significant weight gain, restored glycemic control, and normalized measures of serum oxidative stress and triglycerides but had no effect on LDLs or total cholesterol. Moreover, although pioglitazone treatment normalized renal function, it had no effect on measures of large myelinated nerve fibers, specifically sural or sciatic nerve conduction velocities, but significantly improved measures of small unmyelinated nerve fiber architecture and function.
View Article and Find Full Text PDFWhile oxidative stress is implicated in aging, the impact of oxidative stress on aging in the peripheral nervous system is not well understood. To determine a potential mechanism for age-related deficits in the peripheral nervous system, we examined both functional and morphological changes and utilized microarray technology to compare normal aging in wild-type mice to effects in copper/zinc superoxide dismutase-deficient (Sod1(-/-)) mice, a mouse model of increased oxidative stress. Sod1(-/-) mice exhibit a peripheral neuropathy phenotype with normal sensory nerve function and deficits in motor nerve function.
View Article and Find Full Text PDFUnlabelled: We examined changes in intraepidermal nerve fibers (IENFs) to differentiate patients with diabetic neuropathy (DN) and diabetic neuropathic pain (DN-P) from those with DN without pain (DN-NOP). Punch skin biopsies were collected from the proximal thigh (PT) and distal leg (DL) of normal subjects, patients with type 2 diabetes without evidence of DN (DM), or DN-P and DN-NOP patients. Protein gene product 9.
View Article and Find Full Text PDFBackground: Langerhans cells (LCs) are antigen-presenting dendritic cells located in the skin. It has been reported that LC activation is associated with painful diabetic neuropathy (PDN); however, the mechanism of LC activation is still unclear.
Methods: The db/db mouse, a rodent model of PDN, was used to study the roles of LCs in the development of PDN in type 2 diabetes.
A punch biopsy of the skin is commonly used to quantify intraepidermal nerve fiber densities (IENFD) for the diagnosis of peripheral polyneuropathy (1,2). At present, it is common practice to collect 3 mm skin biopsies from the distal leg (DL) and the proximal thigh (PT) for the evaluation of length-dependent polyneuropathies (3). However, due to the multidirectional nature of IENFs, it is challenging to examine overlapping nerve structures through the analysis of two-dimensional (2D) imaging.
View Article and Find Full Text PDFActivation of the neuronal-glial network in the spinal cord dorsal horn (SCDH) mediates various chronic painful conditions. We studied spinal neuronal-astrocyte signaling interactions involved in the maintenance of painful diabetic neuropathy (PDN) in type 2 diabetes. We used the db/db mouse, an animal model for PDN of type 2 diabetes, which develops mechanical allodynia from 6 to 12 wk of age.
View Article and Find Full Text PDFPainful diabetic neuropathy (PDN) is a common, yet devastating complication of type 2 diabetes. At this time, there is no objective test for diagnosing PDN. In the current study, we measured the peptidergic intraepidermal nerve fiber densities (IENFD) from hind paws of the db/db mouse, an animal model for type 2 diabetes, during the period of mechanical allodynia from 6 to 12 weeks of age.
View Article and Find Full Text PDFBackground: Painful Diabetic Neuropathy (PDN) affects more than 25% of patients with type 2 diabetes; however, the pathogenesis remains unclear due to lack of knowledge of the molecular mechanisms leading to PDN. In our current study, we use an animal model of type 2 diabetes in order to understand the roles of p38 in PDN. Previously, we have demonstrated that the C57BLK db/db (db/db) mouse, a model of type 2 diabetes that carries the loss-of-function leptin receptor mutant, develops mechanical allodynia in the hind paws during the early stage (6-12 wk of age) of diabetes.
View Article and Find Full Text PDFJ Neuropathol Exp Neurol
November 2009
C57BLKS db/db (db/db) mice develop a neuropathy with features of human type 2 diabetic neuropathy. Here, we demonstrate that these mice develop transient mechanical allodynia at the early stage of diabetes. We hypothesized that nerve growth factor (NGF), which enhances the expression of key mediators of nociception (i.
View Article and Find Full Text PDF