Background: Inhibitory factors have been implicated in the failure of remyelination in demyelinating diseases. Myelin associated inhibitors act through a common receptor called Nogo receptor (NgR) that plays critical inhibitory roles in CNS plasticity. Here we investigated the effects of abrogating NgR inhibition in a non-immune model of focal demyelination in adult mouse optic chiasm.
View Article and Find Full Text PDFRNA interference (RNAi) is a major tool for basic and applied investigations. However, obtaining RNAi data that have physiological significance requires investigation of regulations and therapeutic strategies in appropriate in vivo settings. To examine in vivo gene regulation and protein function in the adult neural stem cell (NSC) niche, we optimized a new non-viral vector for delivery of siRNA into the subventricular zone (SVZ).
View Article and Find Full Text PDFThe subventricular zone (SVZ) neural stem cell niche contains mixed populations of stem cells, transit-amplifying cells, and migrating neuroblasts. Deciphering how endogenous signals, such as hormones, affect the balance between these cell types is essential for understanding the physiology of niche plasticity and homeostasis. We show that Thyroid Hormone (T(3)) and its receptor, TRα1, are directly involved in maintaining this balance.
View Article and Find Full Text PDFThe development of the catecholaminergic system of the brain of the lamprey (Lampetra fluviatilis) was studied with immunocytochemistry in a series of larvae of different sizes by using two different antibodies directed against tyrosine hydroxylase (TH), the rate-limiting enzyme of catecholamine synthesis. In group 1 larvae (length: 29-54 mm, ages: 8 months to 1.5 years), the only TH-immunoreactive somata observed were located in the caudal wall of the recessus praeopticus (RP) and in the nucleus tuberculi posterioris (NTP).
View Article and Find Full Text PDF