Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994-2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics.
View Article and Find Full Text PDFThe majority of climate models predict severe increases in future temperature and precipitation in the Arctic. Increases in temperature and precipitation can lead to an intensification of the hydrologic cycle that strongly impacts Arctic environmental conditions. In order to investigate effects of future precipitation scenarios on ecosystems, precipitation manipulation experiments are being performed to simulate drought and extreme precipitation conditions.
View Article and Find Full Text PDFResearch of the past decades has shown that biodiversity is a fundamental driver of ecosystem functioning. However, most of this biodiversity-ecosystem functioning (BEF) research focused on experimental communities on small areas where environmental context was held constant. Whether the established BEF relationships also apply to natural or managed ecosystems that are embedded in variable landscape contexts remains unclear.
View Article and Find Full Text PDFBiodiversity-ecosystem functioning (BEF) experiments have shown that local species richness promotes ecosystem functioning and stability. Whether this also applies under real-world conditions is still debated. Here, we focus on larger scales of space, time and ecological organization.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2017
Experiments have shown positive biodiversity-ecosystem functioning (BEF) relationships in small plots with model communities established from species pools typically comprising few dozen species. Whether patterns found can be extrapolated to complex, nonexperimental, real-world landscapes that provide ecosystem services to humans remains unclear. Here, we combine species inventories from a large-scale network of 447 1-km plots with remotely sensed indices of primary productivity (years 2000-2015).
View Article and Find Full Text PDFPlant growth and architecture is regulated by the polar distribution of the hormone auxin. Polarity and flexibility of this process is provided by constant cycling of auxin transporter vesicles along actin filaments, coordinated by a positive auxin-actin feedback loop. Both polar auxin transport and vesicle cycling are inhibited by synthetic auxin transport inhibitors, such as 1-N-naphthylphthalamic acid (NPA), counteracting the effect of auxin; however, underlying targets and mechanisms are unclear.
View Article and Find Full Text PDF