Publications by authors named "Jacqueline Mason"

CFI-400945 is a selective oral polo-like kinase 4 (PLK4) inhibitor that regulates centriole duplication. PLK4 is aberrantly expressed in patients with acute myeloid leukemia (AML). Preclinical studies indicate that CFI-400945 has potent in vivo efficacy in hematological malignancies and xenograft models, with activity in cells harboring TP53 mutations.

View Article and Find Full Text PDF

Loss of cell-cycle control is a hallmark of human cancer. Cell-cycle checkpoints are essential for maintaining genome integrity and balanced growth and division. They are specifically deregulated in cancer cells and contain regulators that represent potential therapeutic targets.

View Article and Find Full Text PDF

Background: Polo-like kinase 4 (PLK4) plays a key role in centriole replication. Hence PLK4 inhibition disrupts mitosis, and offers a novel approach to treating chromosomally unstable cancers, including pancreatic cancer. CFI-400945 is a first in class small molecule PLK4 inhibitor, currently undergoing early phase clinical trials.

View Article and Find Full Text PDF

Previous efforts from our laboratory demonstrated that (E)-3-((3-(E)-vinylaryl)-1H-indazol-6-yl)methylene)-indolin-2-ones are potent PLK4 inhibitors with in vivo anticancer efficacy upon IP dosing. As part of a continued effort to develop selective and orally efficacious inhibitors, we examined variations on this theme wherein 'directly-linked' aromatics, pendant from the indazole core, replace the arylvinyl moiety. Herein, we describe the design and optimization of this series which was ultimately superseded by (3-aryl-1H-indazol-6-yl)spiro[cyclopropane-1,3'-indolin]-2'-ones.

View Article and Find Full Text PDF

This work describes a scaffold hopping exercise that begins with known imidazo[1,2-a]pyrazines, briefly explores pyrazolo[1,5-a][1,3,5]triazines, and ultimately yields pyrazolo[1,5-a]pyrimidines as a novel class of potent TTK inhibitors. An X-ray structure of a representative compound is consistent with 1(1)/2 type inhibition and provides structural insight to aid subsequent optimization of in vitro activity and physicochemical and pharmacokinetic properties. Incorporation of polar moieties in the hydrophobic and solvent accessible regions modulates physicochemical properties while maintaining potency.

View Article and Find Full Text PDF

TTK/Mps1 is a key kinase controlling progression of cell division via participation in the mitotic spindle assembly checkpoint and is overexpressed in a number of human cancers. Herein we report the discovery of 4-(4-aminopyrazolo[1,5-a][1,3,5]triazin-8-yl)benzamides as a potent, novel class of TTK inhibitors. The series was identified by means of bioisosteric replacement of the related imidazopyrazine and imidazopyridazine scaffolds.

View Article and Find Full Text PDF

The cell cycle is an evolutionarily conserved process necessary for mammalian cell growth and development. Because cell-cycle aberrations are a hallmark of cancer, this process has been the target of anti-cancer therapeutics for decades. However, despite numerous clinical trials, cell-cycle-targeting agents have generally failed in the clinic.

View Article and Find Full Text PDF

The acetamido and carboxamido substituted 3-(1H-indazol-3-yl)benzenesulfonamides are potent TTK inhibitors. However, they display modest ability to attenuate cancer cell growth; their physicochemical properties, and attendant pharmacokinetic parameters, are not drug-like. By eliminating the polar 3-sulfonamide group and grafting a heterocycle at the 4 position of the phenyl ring, potent inhibitors with oral exposure were obtained.

View Article and Find Full Text PDF

Previous publications from our laboratory have introduced novel inhibitors of Polo-like kinase 4 (PLK4), a mitotic kinase identified as a potential target for cancer therapy. The search for potent and selective PLK4 inhibitors yielded (E)-3-((1Hindazol-6-yl)methylene)indolin-2-ones, which were superseded by the bioisosteric 2-(1H-indazol-6-yl)spiro[cyclopropane-1,3'-indolin]-2'-ones, e.g.

View Article and Find Full Text PDF

Controversy over the role of antioxidants in cancer has persisted for decades. Here, we demonstrate that synthesis of the antioxidant glutathione (GSH), driven by GCLM, is required for cancer initiation. Genetic loss of Gclm prevents a tumor's ability to drive malignant transformation.

View Article and Find Full Text PDF

PLK4 was identified as a promising therapeutic target through a systematic approach that combined RNAi screening with gene expression analysis in human breast cancers and cell lines. A drug discovery program culminated in CFI-400945, a potent and selective PLK4 inhibitor. Cancer cells treated with CFI-400945 exhibit effects consistent with PLK4 kinase inhibition, including dysregulated centriole duplication, mitotic defects, and cell death.

View Article and Find Full Text PDF

TTK kinase was identified by in-house siRNA screen and pursued as a tractable, novel target for cancer treatment. A screening campaign and systematic optimization, supported by computer modeling led to an indazole core with key sulfamoylphenyl and acetamido moieties at positions 3 and 5, respectively, establishing a novel chemical class culminating in identification of 72 (CFI-400936). This potent inhibitor of TTK (IC50=3.

View Article and Find Full Text PDF

Polo-like kinase 4 (PLK4), a unique member of the polo-like kinase family of serine-threonine kinases, is a master regulator of centriole duplication that is important for maintaining genome integrity. Overexpression of PLK4 is found in several human cancers and is linked with a predisposition to tumorigenesis. Previous efforts to identify potent and efficacious PLK4 inhibitors resulted in the discovery of (E)-3-((1H-indazol-6-yl)methylene)indolin-2-ones, which are superseded by the bioisosteric 2-(1H-indazol-6-yl)spiro[cyclopropane-1,3′-indolin]-2′-ones reported herein.

View Article and Find Full Text PDF

The pylorus is innervated by vagal mechanoreceptors that project to gastrointestinal smooth muscle, but the distributions and specializations of vagal endings in the sphincter have not been fully characterized. To evaluate their organization, the neural tracer dextran biotin was injected into the nodose ganglia of rats. Following tracer transport, animals were perfused, and their pylori and antra were prepared as whole mounts.

View Article and Find Full Text PDF

Little is known about the architecture of the vagal motor units that control esophageal striated muscle, in spite of the fact that these units are necessary, and responsible, for peristalsis. The present experiment was designed to characterize the motor neuron projection fields and terminal arbors forming esophageal motor units. Nucleus ambiguus compact formation neurons of the rat were labeled by bilateral intracranial injections of the anterograde tracer dextran biotin.

View Article and Find Full Text PDF

The family of Polo-like kinases is important in the regulation of mitotic progression; this work keys on one member, namely Polo-like kinase 4 (PLK4). PLK4 has been identified as a candidate anticancer target which prompted a search for potent and selective inhibitors of PLK4. The body of the paper describes lead generation and optimization work which yielded nanomolar PLK4 inhibitors.

View Article and Find Full Text PDF

To supply a fuller morphological characterization of the vagal afferents innervating the lower esophageal sphincter (LES), specifically to label vagal terminals in the tissues forming the LES in the gastroesophageal junction, the present experiment employed injections of dextran biotin into the nodose ganglia of rats. Four types of vagal afferents innervated the LES. Clasp and sling muscle fibers were directly and prominently innervated by intramuscular arrays (IMAs).

View Article and Find Full Text PDF

Tumor cells gain a survival/growth advantage by adapting their metabolism to respond to environmental stress, a process known as metabolic transformation. The best-known aspect of metabolic transformation is the Warburg effect, whereby cancer cells up-regulate glycolysis under aerobic conditions. However, other mechanisms mediating metabolic transformation remain undefined.

View Article and Find Full Text PDF

Sprouty (Spry) proteins are negative regulators of receptor tyrosine kinase signaling; however, their exact mechanism of action remains incompletely understood. We identified phosphatidylinositol-specific phospholipase C (PLC)-γ as a partner of the Spry1 and Spry2 proteins. Spry-PLCγ interaction was dependent on the Src homology 2 domain of PLCγ and a conserved N-terminal tyrosine residue in Spry1 and Spry2.

View Article and Find Full Text PDF

The Wilms tumor gene (WT1) is mutated or deleted in patients with heredofamilial syndromes associated with the development of Wilms tumors, but is infrequently mutated in sporadic Wilms tumors. By comparing the microarray profiles of syndromic versus sporadic Wilms tumors and WT1-inducible Saos-2 osteosarcoma cells, we identified interferon-inducible protein 16 (IFI16), a transcriptional modulator, as a differentially expressed gene and a candidate WT1 target gene. WT1 induction in Saos-2 osteosarcoma cells led to strong induction of IFI16 expression and its promoter activity was responsive to the WT1 protein.

View Article and Find Full Text PDF

Receptor tyrosine kinases (RTKs) control a wide variety of processes in multicellular organisms, including proliferation, differentiation, migration and survival. Their activity is tightly controlled through the coordinated action of both positive and negative regulators that function at multiple levels of the signal transduction cascade, and at different time points within the growth-factor-induced response. When this process goes awry, the outcome can be developmental defects and malignancy.

View Article and Find Full Text PDF

Background: Glycoprotein 210 (GP210) is a transmembrane component of the nuclear pore complex of metazoans, with a short carboxyterminus protruding towards the cytoplasm. Its function is unknown, but it is considered to be a major structural component of metazoan nuclear pores. Yet, our previous findings showed pronounced differences in expression levels in embryonic mouse tissues and cell lines.

View Article and Find Full Text PDF

Gain-of-function mutations in exon 3 of beta-catenin (CTNNB1) are specific for Wilms' tumors that have lost WT1, but 50% of WT1-mutant cases lack such "hot spot" mutations. To ask whether stabilization of beta-catenin might be essential after WT1 loss, and to identify downstream target genes, we compared expression profiles in WT1-mutant versus WT1 wild-type Wilms' tumors. Supervised and nonsupervised hierarchical clustering of the expression data separated these two classes of Wilms' tumor.

View Article and Find Full Text PDF

Sprouty proteins are recently identified receptor tyrosine kinase (RTK) inhibitors potentially involved in many developmental processes. Here, we report that Sprouty proteins become tyrosine phosphorylated after growth factor treatment. We identified Tyr55 as a key residue for Sprouty2 phosphorylation and showed that phosphorylation was required for Sprouty2 to inhibit RTK signaling, because a mutant Sprouty2 lacking Tyr55 augmented signaling.

View Article and Find Full Text PDF

Venous and arterial thromboembolic disorders are common medical conditions that are associated with considerable morbidity and mortality. Unfractionated heparin (UFH) and its derivatives, the low molecular weight heparins (LMWHs), are the anticoagulants of choice when a rapid anticoagulant effect is required. LMWHs have several advantages over UFH, including a longer plasma half-life and higher bioavailability; a predictable dose response, which enables once- or twice-daily dosing; and a more convenient route of administration (subcutaneous instead of intravenous), which enables patients to self-inject in an out-patient setting.

View Article and Find Full Text PDF