Publications by authors named "Jacqueline M Katz"

Background: This report summarizes the discussions and conclusions from the "Correlates of Protection for Next Generation Influenza Vaccines: Lessons Learned from the COVID-19 Pandemic" meeting, which took place in Seattle, USA, from March 1, 2023, to March 3, 2023.

Conclusions: Discussions around influenza virus correlates of protection and their use continued from where the discussion had been left off in 2019. While there was not much progress in the influenza field itself, many lessons learned during the coronavirus disease 2019 (COVID-19) pandemic, especially the importance of mucosal immunity, were discussed and can directly be applied to influenza correlates of protection.

View Article and Find Full Text PDF

Functional human brown and white adipose tissue (BAT and WAT) are vital for thermoregulation and nutritional homeostasis, while obesity and other stressors lead, respectively, to cold intolerance and metabolic disease. Understanding BAT and WAT physiology and dysfunction necessitates clinical trials complemented by mechanistic experiments at the cellular level. These require standardized in vitro models, currently lacking, that establish references for gene expression and function.

View Article and Find Full Text PDF

Influenza A(H7N9) viruses remain as a high pandemic threat. The continued evolution of the A(H7N9) viruses poses major challenges in pandemic preparedness strategies through vaccination. We assessed the breadth of the heterologous neutralizing antibody responses against the 3rd and 5th wave A(H7N9) viruses using the 1st wave vaccine sera from 4 vaccine groups: 1.

View Article and Find Full Text PDF

Influenza virus non-structural protein 1 (NS1) counteracts host antiviral innate immune responses by inhibiting Retinoic acid inducible gene-I (RIG-I) activation. However, whether NS1 also specifically regulates RIG-I transcription is unknown. Here, we identify a CCAAT/Enhancer Binding Protein beta (C/EBPβ) binding site in the RIG-I promoter as a repressor element, and show that NS1 promotes C/EBPβ phosphorylation and its recruitment to the RIG-I promoter as a C/EBPβ/NS1 complex.

View Article and Find Full Text PDF

Background: This report summarizes the discussions and conclusions from the "Immunological Assays and Correlates of Protection for Next-Generation Influenza Vaccines" meeting which took place in Siena, Italy, from March 31, 2019, to April 2, 2019.

Conclusions: Furthermore, we review current correlates of protection against influenza virus infection and disease and their usefulness for the development of next generation broadly protective and universal influenza virus vaccines.

View Article and Find Full Text PDF

Epidemiological studies suggest that humans who receive repeated annual immunization with influenza vaccine are less well protected against influenza than those who receive vaccine in the current season only. To better understand potential mechanisms underlying these observations, we vaccinated influenza-naive ferrets either twice, 10 months apart (repeated vaccination group; RV), or once (current season only group; CS), using a prime-boost regimen, and then challenged the ferrets with A/Hong Kong/4801/2014(H3N2). Ferrets that received either vaccine regimen were protected against influenza disease and infection relative to naive unvaccinated ferrets, but the RV group shed more virus, especially at the peak of virus shedding 2 days post infection ( < 0.

View Article and Find Full Text PDF

Highly pathogenic avian influenza (HPAI) A(H5Nx) viruses continue to pose a pandemic threat. US national vaccine stockpiles are a cornerstone of the influenza pandemic preparedness plans. However, continual genetic and antigenic divergence of A(H5Nx) viruses requires the development of effective vaccination strategies using stockpiled vaccines and adjuvants for pandemic preparedness.

View Article and Find Full Text PDF

Background: We evaluated a Russian-backbone, live, attenuated influenza vaccine (LAIV) for immunogenicity and viral shedding in a randomized, placebo-controlled trial among Bangladeshi children.

Methods: Healthy children received a single, intranasal dose of LAIV containing the 2011-2012 recommended formulation or placebo. Nasopharyngeal wash (NPW) specimens were collected on days 0, 2, 4, and 7.

View Article and Find Full Text PDF

Background: In a 2012 Phase II clinical trial, 300 Bangladeshi children aged 24 to 59 months with no prior influenza vaccine exposure were randomized to receive a single intranasally-administered dose of either trivalent, Russian-backbone, live, attenuated influenza vaccine (LAIV) or placebo. Protocol-defined analyses, presented in the companion manuscript, demonstrate decreased viral detection and immunogenicity for A/H1N1pdm09, relative to the A/H3N2 and B strains. This post hoc analysis of the trial data aims to investigate the LAIV strain differences by testing the hypothesis that preexisting humoral and mucosal immunity may influence viral recovery and immune responses after LAIV receipt.

View Article and Find Full Text PDF

The 2017-2018 seasonal influenza epidemics were severe in the US and Australia where the A(H3N2) subtype viruses predominated. Although circulating A(H3N2) viruses did not differ antigenically from that recommended by the WHO for vaccine production, overall interim vaccine effectiveness estimates were below historic averages (33%) for A(H3N2) viruses. The majority (US) or all (Australian) vaccine doses contained multiple amino-acid changes in the hemagglutinin protein, resulting from the necessary adaptation of the virus to embryonated hen's eggs used for most vaccine manufacturing.

View Article and Find Full Text PDF

Many broadly neutralizing antibodies (bnAbs) bind to conserved areas of the hemagglutinin (HA) stalk region and can inhibit the low pH induced HA conformational changes necessary for viral membrane fusion activity. We developed and evaluated a high-throughput virus-free and cell-free ELISA based low pH induced HA Conformational Change Inhibition Antibody Detection Assay (HCCIA) and a complementary proteinase susceptibility assay. Human serum samples (n = 150) were tested by HCCIA using H3 recombinant HA.

View Article and Find Full Text PDF

Background: Although ferret antisera used in influenza surveillance did not detect antigenic drift of A(H1N1)pdm09 viruses during the 2015-2016 season, low vaccine effectiveness was reported in adults. We investigated the immune basis of low responses to circulating A(H1N1)pdm09 viruses after vaccination.

Methods: Prevaccination and postvaccination serum samples collected from >300 adults (aged 18-49 years) in 6 seasons (2010-2011 to 2015-2016) were analyzed using hemagglutination inhibition assays to evaluate the antibody responses to 13 A(H1N1) viruses circulated from 1977 to 2016.

View Article and Find Full Text PDF

Background: In March 2002, an outbreak of low-pathogenic avian influenza (LPAI) A(H7N2) was detected among commercial poultry operations in Virginia.

Methods: We performed a serosurvey of 80 government workers involved in efforts to control the outbreak.

Results: One study participant who assisted with disposal of infected birds tested positive for neutralizing antibodies to influenza A(H7N2) by microneutralization assay and H7-specific IgM antibodies by enzyme-linked immunosorbent assay (ELISA).

View Article and Find Full Text PDF

Background: The kinetics of the antibody response during severe influenza are not well documented.

Methods: Critically ill patients infected with 2009 pandemic influenza A(H1N1) virus (A[H1N1]pdm09), confirmed by reverse-transcription polymerase chain reaction analysis or seroconversion (defined as a ≥4-fold rise in titers), during 2009-2011 in Canada were prospectively studied. Antibody titers in serially collected sera were determined using hemagglutinin inhibition (HAI) and microneutralization assays.

View Article and Find Full Text PDF

In August 2016, the World Health Organization (WHO) convened the "Eighth meeting on development of influenza vaccines that induce broadly protective and long-lasting immune responses" to discuss the regulatory requirements and pathways for licensure of next-generation influenza vaccines, and to identify areas where WHO can promote the development of such vaccines. Participants included approximately 120 representatives of academia, the vaccine industry, research and development funders, and regulatory and public health agencies. They reviewed the draft WHO preferred product characteristics (PPCs) of vaccines that could address prioritized unmet public health needs and discussed the challenges facing the development of such vaccines, especially for low- and middle-income countries (LMIC).

View Article and Find Full Text PDF

Background: Recent outbreaks of swine-origin influenza A(H3N2) variant (H3N2v) viruses have raised public health concerns. Previous studies indicated that older children and young adults had the highest levels of hemagglutination-inhibition (HI) antibodies to 2010-2011 H3N2v viruses. However, newly emerging 2013 H3N2v have acquired antigenic mutations in the hemagglutinin at amino acid position 145 (N145K/R).

View Article and Find Full Text PDF

Among all influenza viruses assessed using CDC's Influenza Risk Assessment Tool (IRAT), the Asian lineage avian influenza A(H7N9) virus (Asian H7N9), first reported in China in March 2013,* is ranked as the influenza virus with the highest potential pandemic risk (1). During October 1, 2016-August 7, 2017, the National Health and Family Planning Commission of China; CDC, Taiwan; the Hong Kong Centre for Health Protection; and the Macao CDC reported 759 human infections with Asian H7N9 viruses, including 281 deaths, to the World Health Organization (WHO), making this the largest of the five epidemics of Asian H7N9 infections that have occurred since 2013 (Figure 1). This report summarizes new viral and epidemiologic features identified during the fifth epidemic of Asian H7N9 in China and summarizes ongoing measures to enhance pandemic preparedness.

View Article and Find Full Text PDF

The development of influenza candidate vaccine viruses (CVVs) for pre-pandemic vaccine production represents a critical step in pandemic preparedness. The multiple subtypes and clades of avian or swine origin influenza viruses circulating world-wide at any one time necessitates the continuous generation of CVVs to provide an advanced starting point should a novel zoonotic virus cross the species barrier and cause a pandemic. Furthermore, the evolution and diversity of novel influenza viruses that cause zoonotic infections requires ongoing monitoring and surveillance, and, when a lack of antigenic match between circulating viruses and available CVVs is identified, the production of new CVVs.

View Article and Find Full Text PDF

Background: We determined influenza A(H1N1)pdm09 antibody levels before and after the first wave of the pandemic in an urban community in Dhaka, Bangladesh.

Methods: We identified a cohort of households by stratified random sampling. We collected baseline serum specimens during July-August 2009, just prior to the initial wave of the 2009 pandemic in this community and a second specimen during November 2009, after the pandemic peak.

View Article and Find Full Text PDF

Avian influenza viruses, notably H5 subtype viruses, pose a continuous threat to public health due to their pandemic potential. In recent years, influenza virus H5 subtype split vaccines with novel oil-in-water emulsion based adjuvants (e.g.

View Article and Find Full Text PDF

Sporadic, yet frequent human infections with avian H5N1 influenza A viruses continue to pose a potential pandemic threat. Poor immunogenicity of unadjuvanted H5N1 vaccines warrants developing novel adjuvants and formulations as well as alternate delivery systems to improve their immunogenicity and efficacy. Here, we show that Protollin, a nasal adjuvant composed of Neisseria meningitides outer membrane proteins non-covalently linked to Shigella flexneri 2a lipopolysaccharide, is a potent nasal adjuvant for an inactivated split virion H5N1 clade 1 A/Viet Nam1203/2004 (A/VN/1203/04) vaccine in a mouse model.

View Article and Find Full Text PDF

During March 2013-February 24, 2017, annual epidemics of avian influenza A(H7N9) in China resulted in 1,258 avian influenza A(H7N9) virus infections in humans being reported to the World Health Organization (WHO) by the National Health and Family Planning Commission of China and other regional sources (1). During the first four epidemics, 88% of patients developed pneumonia, 68% were admitted to an intensive care unit, and 41% died (2). Candidate vaccine viruses (CVVs) were developed, and vaccine was manufactured based on representative viruses detected after the emergence of A(H7N9) virus in humans in 2013.

View Article and Find Full Text PDF

Background: Detections of influenza A subtype-specific antibody responses are often complicated by the presence of cross-reactive antibodies. We developed two novel multiplex platforms for antibody detection. The multiplexed magnetic fluorescence microsphere immunoassay (MAGPIX) is a high-throughput laboratory-based assay.

View Article and Find Full Text PDF