Publications by authors named "Jacqueline Lessig"

Efficient and safe delivery systems for siRNA therapeutics remain a challenge. Elevated secreted protein, acidic, and rich in cysteine (SPARC) protein expression is associated with tissue scarring and fibrosis. Here we investigate the feasibility of encapsulating SPARC-siRNA in the bilayers of layer-by-layer (LbL) nanoparticles (NPs) with poly(L-arginine) (ARG) and dextran (DXS) as polyelectrolytes.

View Article and Find Full Text PDF

The treatment of chronic inflammation requires new concepts since recent approaches are mostly accompanied by massive side effects. Layer-by-layer (LbL) microcapsules, functionalized with anti-inflammatory substances such as α1-antitrypsin (AT), may avoid major side- and off-target effects thanks to their local application and the sustained delivery of defined amounts of the active agents into polymorphonuclear leukocytes (PMNs). However, LbL microcapsule application in inflamed tissues requires specific design and preparation.

View Article and Find Full Text PDF

α1 -Antitrypsin (AT), a serine protease inhibitor that specifically targets hydrolytic enzymes, plays a significant role in the termination of tissue inflammation and can therefore represent a key factor in chronic incidences as chronic obstructive pulmonary disease (COPD) or chronic hepatitis. A local and low-dose therapy for the treatment of acquired chronic inflammatory processes which are characterized by insufficient AT amounts but also of genetically conditioned AT deficiencies is supposed to be more effective and less cost-intensive compared to current therapies. In this study, a noncovalent complex formation between the cell-penetrating peptide carrier hCT(18-32)-k7 and AT was performed.

View Article and Find Full Text PDF

Layer-by-layer (LbL)-coated microcarriers offer a good opportunity as transport systems for active agents into specific cells and tissues. The assembling of oppositely charged polyelectrolytes enables a modular construction of the carriers and therefore an optimized integration and application of drug molecules. Here, we report the multilayer incorporation and transport of α(1)-antitrypsin (AT) by colloidal microcarriers.

View Article and Find Full Text PDF

Tissue destruction, pain and loss of function in chronically inflamed tissues can result from noxious agents released from myeloperoxidase (MPO) and its highly reactive product hypochlorous acid (HOCl) or proteases such as neutrophil elastase (NE). Currently there exists a high demand for medications that provide gentle treatments, free from side effects inherent in those prescribed today. One method to circumvent side effects is through the use of locally applied drug delivery.

View Article and Find Full Text PDF

Functionalized microcarriers or hollow capsules transporting active agents offer the opportunity for drug delivery inside cells. A promising application of these drug delivery systems is the direct transport as well as the release of immobilized antiinflammatory substances (AIS) into polymorphonuclear leukocytes (PMNs), which play a key role in the course of inflammatory processes. The intended delivery of AIS into the inflamed tissue could alleviate tissue destruction taking place during chronic inflammation, as well as facilitate the termination of these processes.

View Article and Find Full Text PDF

Numerous drawbacks in the current medical treatment of chronic inflammations still require the design of sensitive and gentle methods without side effects. Layer-by-layer (LbL) coated microcarriers loaded with a cocktail of anti-inflammatory substances are supposed to be a new challenge for the medical treatment of immunoreactive cells such as macrophages and polymorphonuclear leukocytes (PMN). Nevertheless, microcarrier application requires biocompatibility of the system itself.

View Article and Find Full Text PDF

Drug delivery into immune cells has high potential for the treatment of all kinds of inflammation, allowing a target-oriented transport of active agents. The advantage of this local drug release is the prevention of negative effects of systemic applications and low-dose application. Thereby, the phagocytotic capability of mature phagocytes is essential.

View Article and Find Full Text PDF

Many mammalian tissues and cells contain, in addition to (diacyl) phospholipids, considerable amounts of plasmalogens, which may function as important antioxidants. Apart from the "scavenger" function mediated by the high sensitivity of the vinyl-ether bond, the functional role of plasmalogens is so far widely unknown. Furthermore, there is increasing evidence that plasmalogen degradation products have harmful effects in inflammatory processes.

View Article and Find Full Text PDF

Aim: To determine the cellular distribution of secretory phospholipase A(2) (sPLA(2)) in dependence on the acrosomal state and under the action of elastase released under inflammatory processes from leukocytes.

Methods: Acrosome reaction of spermatozoa was triggered by calcimycin. Human leukocyte elastase was used to simulate inflammatory conditions.

View Article and Find Full Text PDF

The heme-containing enzyme myeloperoxidase (MPO) becomes expressed to the cell surface of non-vital polymorphonuclear leukocytes (PMNs) as evidenced by flow cytometry analysis and confocal fluorescence microscopy. While only a very small percentage of freshly isolated cells was able to bind the MPO antibody, PMN suspensions cultured for 36 h or longer time periods contained an increasing number of cells able to interact with these antibodies. Two distinct patterns of fluorescence for the MPO antibodies were observed.

View Article and Find Full Text PDF

Neutrophils are the first cells arriving at sites of acute inflammation. On their way from blood to the site of inflammation, neutrophils have to adhere to endothelial cells (EC), to transverse the basement membrane and subsequently to travel through the interstitial matrix. Recently, we have shown that human Thy-1 is an alternate EC receptor for the leukocyte integrin Mac-1 that contributes to leukocyte recruitment to sites of inflammation, providing a new pathway for adhesion and transmigration of neutrophils.

View Article and Find Full Text PDF

The heme protein myeloperoxidase is released from stimulated polymorphonuclear leukocytes, a cell species found in increasing amounts in the male and female genital tract of patients with genital tract inflammations. Myeloperoxidase binds only to a fraction of freshly prepared human spermatozoa. The number of spermatozoa able to bind myeloperoxidase raised considerably in samples containing pre-damaged cells or in acrosome-reacted samples.

View Article and Find Full Text PDF

The myeloperoxidase-derived metabolite hypochlorous acid (HOCl) promotes the selective cleavage of plasmalogens into chloro fatty aldehydes and 1-lysophosphatidylcholine (LPC). The subsequent conversion of the initially generated LPC was investigated in plasmalogen samples in dependence on the fatty acid residue in the sn-2 position by matrix-assisted laser desorption and ionization time-of-flight mass spectrometry and (31)P NMR spectroscopy. Plasmalogens containing an oleic acid residue in the sn-2 position are converted by moderate amounts of HOCl primarily to 1-lyso-2-oleoyl-sn-glycero-3-phosphocholine and at increased HOCl concentrations to the corresponding chlorohydrin species.

View Article and Find Full Text PDF

Alpha1-antitrypsin is well known for its ability to inhibit human neutrophil elastase. Pretreatment of alpha1-antitrypsin with hypohalous acids HOCl and HOBr as well as with the myeloperoxidase-hydrogen peroxide-chloride (or bromide) system inactivated this proteinase. The flavonols rutin, quercetin, myricetin, and kaempferol inhibited the inactivation of alpha1-antitrypsin by HOCl and HOBr with rutin having the most pronounced effect.

View Article and Find Full Text PDF

The fertilising ability of human spermatozoa may be impaired by inflammations of the genital tract, although details of these processes are still unknown. Hypochlorous acid (HOCl), an important product of myeloperoxidase released from stimulated neutrophils, induces a concentration-dependent increase in externalisation of phosphatidylserine in ejaculated human spermatozoa as revealed by fluorescence-activated cell sorting (FACS) analysis. The increase of annexin-V binding cells starts already at about 10(-5) mol/l HOCl, while a formation of lysophosphatidylcholines as detected by matrix-assisted laser desorption and ionisation time-of-flight mass spectrometry (MALDI-TOF MS) is only found at HOCl concentrations higher than 10(-4) mol/l.

View Article and Find Full Text PDF

Alterations in the phospholipid (PL) composition of spermatozoal membranes occur during the fertilization process. Furthermore, membrane lipid composition is of high interest with respect to cryopreservation. The PL and fatty acid compositions of human and boar spermatozoa are compared by using matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) in combination with thin-layer chromatography and 31P NMR spectroscopy.

View Article and Find Full Text PDF

In this study we demonstrated the combination of MALDI-TOF MS and TLC as a fast and powerful tool to investigate the phospholipid (PL) composition of organic extracts of bull spermatozoa. Since phosphatidylcholine (PC) is the dominant PL species, an adequate resolution of MALDI-TOF spectra for sphingomyelin (SM) or phosphatidylethanolamine (PE) was achieved only after previous PL separation by TLC. We found a poor diversity especially for PE and PC, mainly containing ether-linked fatty acids which were 1-palmityl-2-docosahexaenoyl-PL and the corresponding alkenyl-acyl compound (plasmalogen) 1-palmitenyl-2-docosahexaenoyl-PL.

View Article and Find Full Text PDF

To study the relationship of beta-amyloid-mediated micro- and astrogliosis and inflammation-induced proteins including intercellular adhesion molecule (ICAM-1), brain tissue from transgenic Tg2576 mice expressing the Swedish mutation of the human amyloid precursor protein were examined for ICAM-1 expression. Immunocytochemistry demonstrated a diffuse immunostaining of ICAM-1 in the corona around fibrillary beta-amyloid plaques and an upregulation of ICAM-1 in activated microglial cells located in close proximity to the plaques, an ICAM-1 distribution pattern that partly mimics the situation in the brain of Alzheimer patients. The developmental time course revealed that the rate of cortical ICAM-1 induction was somewhat behind that of the progression of beta-amyloid plaque deposition.

View Article and Find Full Text PDF