The atmosphere may be Earth's largest microbial ecosystem. It is connected to all of Earth's surface ecosystems and plays an important role in microbial dispersal on local to global scales. Despite this grand scale, surprisingly little is understood about the atmosphere itself as a habitat.
View Article and Find Full Text PDFIn the search for life in our Solar System, Mars remains a promising target based on its proximity and similarity to Earth. When Mars transitioned from a warmer, wetter climate to its current dry and freezing conditions, any putative extant life probably retreated into habitable refugia such as the subsurface or the interior of rocks. Terrestrial cryptoendolithic microorganisms ( those inhabiting rock interiors) thus represent possible modern-day Mars analogs, particularly those from the hyperarid McMurdo Dry Valleys in Antarctica.
View Article and Find Full Text PDFThe phyla Nitrospirota and Nitrospinota have received significant research attention due to their unique nitrogen metabolisms important to biogeochemical and industrial processes. These phyla are common inhabitants of marine and terrestrial subsurface environments and contain members capable of diverse physiologies in addition to nitrite oxidation and complete ammonia oxidation. Here, we use phylogenomics and gene-based analysis with ancestral state reconstruction and gene-tree-species-tree reconciliation methods to investigate the life histories of these two phyla.
View Article and Find Full Text PDFLost Hammer Spring, located in the High Arctic of Nunavut, Canada, is one of the coldest and saltiest terrestrial springs discovered to date. It perennially discharges anoxic (<1 ppm dissolved oxygen), sub-zero (~-5 °C), and hypersaline (~24% salinity) brines from the subsurface through up to 600 m of permafrost. The sediment is sulfate-rich (1 M) and continually emits gases composed primarily of methane (~50%), making Lost Hammer the coldest known terrestrial methane seep and an analog to extraterrestrial habits on Mars, Europa, and Enceladus.
View Article and Find Full Text PDFFluids circulating through oceanic crust play important roles in global biogeochemical cycling mediated by their microbial inhabitants, but studying these sites is challenged by sampling logistics and low biomass. Borehole observatories installed at the North Pond study site on the western flank of the Mid-Atlantic Ridge have enabled investigation of the microbial biosphere in cold, oxygenated basaltic oceanic crust. Here we test a methodology that applies redox-sensitive fluorescent molecules for flow cytometric sorting of cells for single cell genomic sequencing from small volumes of low biomass (approximately 10 cells ml) crustal fluid.
View Article and Find Full Text PDFNo instrument capable of direct life detection has been included on a mission payload to Mars since NASA's Viking missions in the 1970s. This prevents us from discovering whether life is or ever was present on Mars. DNA is an ideal target biosignature since it is unambiguous, nonspecific, and readily detectable with nanopore sequencing.
View Article and Find Full Text PDFThe Gypsum Hill (GH) springs on Axel Heiberg Island in the Canadian high Arctic are host to chemolithoautotrophic, sulfur-oxidizing streamers that flourish in the high Arctic winter in water temperatures from -1.3 to 7°C with ~8% salinity in a high Arctic winter environment with air temperatures commonly less than -40°C and an average annual air temperature of -15°C. Metagenome sequencing and binning of streamer samples produced a 96% complete Thiomicrorhabdus sp.
View Article and Find Full Text PDFWater tracks in the Antarctic Dry Valleys are dark linear features of increased soil moisture that flow downslope over the spring and summer, providing a source of moisture in a cold-arid desert. They are typically sourced from melting snow, ground ice, and deliquescence (Levy , 2011 ). This research presents the first in-depth study of the activity potential and diversity of microbial communities of Antarctic water tracks.
View Article and Find Full Text PDFEarth's subsurface is often isolated from phototrophic energy sources and characterized by chemotrophic modes of life. These environments are often oligotrophic and limited in electron donors or electron acceptors, and include continental crust, subseafloor oceanic crust, and marine sediment as well as subglacial lakes and the subsurface of polar desert soils. These low energy subsurface environments are therefore uniquely positioned for examining minimum energetic requirements and adaptations for chemotrophic life.
View Article and Find Full Text PDFThe microbial ecology and activity of serpentine deposits and associated hydrated minerals are largely unknown. Previous research has largely focused on microbial communities in active serpentinizing systems, whereas relatively little research has demonstrated the ability of serpentine deposits to host microbial communities after the cessation of serpentinization. Given the potential role of serpentinization reactions fueling primitive microbial metabolisms on early Earth and the identification of serpentine deposits on Mars, knowledge of these geobiological relationships and potential for serpentine to host extant microbial communities and preserve biosignatures is increasingly important for planetary exploration seeking signs of life.
View Article and Find Full Text PDFPermafrost accounts for 27% of all soil ecosystems and harbors diverse microbial communities. Our understanding of microorganisms in permafrost, their activities and adaptations, remains limited. Using five subzero-growing (cryophilic) permafrost bacteria, we examined features of cold adaptation through comparative genomic analyses with mesophilic relatives.
View Article and Find Full Text PDFSome of the coldest and driest permafrost soils on Earth are located in the high-elevation McMurdo Dry Valleys (MDVs) of Antarctica, but little is known about the permafrost microbial communities other than that microorganisms are present in these valleys. Here, we describe the microbiology and habitable conditions of highly unique dry and ice-cemented permafrost in University Valley, one of the coldest and driest regions in the MDVs (1700 m above sea level; mean temperature -23 °C; no degree days above freezing), where the ice in permafrost originates from vapour deposition rather than liquid water. We found that culturable and total microbial biomass in University Valley was extremely low, and microbial activity under ambient conditions was undetectable.
View Article and Find Full Text PDFPermafrost in the high elevation McMurdo Dry Valleys of Antarctica ranks among the driest and coldest on Earth. Permafrost soils appear to be largely inhospitable to active microbial life, but sandstone lithic microhabitats contain a trophically simple but functional cryptoendolithic community. We used metagenomic sequencing and activity assays to examine the functional capacity of permafrost soils and cryptoendolithic communities in University Valley, one of the most extreme regions in the Dry Valleys.
View Article and Find Full Text PDFHere, we report the draft genome sequence of Rhodotorula sp. strain JG1b, a yeast that was isolated from ice-cemented permafrost in the upper-elevation McMurdo Dry Valleys, Antarctica. The sequenced genome size is 19.
View Article and Find Full Text PDFThe permafrost soils of the high elevation McMurdo Dry Valleys are the most cold, desiccating and oligotrophic on Earth. Rhodococcus sp. JG3 is one of very few bacterial isolates from Antarctic Dry Valley permafrost, and displays subzero growth down to -5°C.
View Article and Find Full Text PDFThe actinobacterium Rhodococcus sp. JG-3 is an aerobic, eurypsychrophilic, soil bacterium isolated from permafrost in the hyper arid Upper Dry Valleys of Antarctica. It is yellow pigmented, gram positive, moderately halotolerant and capable of growth from 30 °C down to at least -5 °C.
View Article and Find Full Text PDFUsing functional metagenomics to study the resistomes of bacterial communities isolated from different layers of the Canadian high Arctic permafrost, we show that microbial communities harbored diverse resistance mechanisms at least 5,000 years ago. Among bacteria sampled from the ancient layers of a permafrost core, we isolated eight genes conferring clinical levels of resistance against aminoglycoside, β-lactam and tetracycline antibiotics that are naturally produced by microorganisms. Among these resistance genes, four also conferred resistance against amikacin, a modern semi-synthetic antibiotic that does not naturally occur in microorganisms.
View Article and Find Full Text PDF