Publications by authors named "Jacqueline Friedmann"

Atomic force microscopy is not only a high-resolution imaging device but also a mechanical machine, which can be used either to indent or stretch (soft) biomaterials. Due to the statistical nature of such materials (i.e.

View Article and Find Full Text PDF

Amyloid fibrils are commonly observed to adopt multiple distinct morphologies, which eventually can have significantly different neurotoxicities, as e.g. demonstrated in case of the Alzheimer peptide.

View Article and Find Full Text PDF

We report a study of the electrostatic layer-by-layer self-assembly of electroactive polyelectrolyte multilayers incorporating the redox protein cytochrome c (cyt c) combined with recrystallization of the bacterial cell wall surface layer from Bacillus sphaericus CCM 2177 SbpA (S-layer). The polyelectrolyte multilayer assembly was prepared on flat gold electrodes with a nanometer-scale roughness that allowed monitoring of the film formation throughout all the assembly stages by atomic force microscopy measurements in liquid with respect to topography and forces. The deposition of alternating layers of sulfonated polyaniline and cyt c was carried out by adsorption from the corresponding solutions on a cyt c monolayer electrode.

View Article and Find Full Text PDF

The crystalline cell-surface (S) layer sgsE of Geobacillus stearothermophilus NRS 2004/3a represents a natural protein self-assembly system with nanometer-scale periodicity that is evaluated as a combined carrier/patterning element for the conception of novel types of biocatalyst aiming at the controllable display of biocatalytic epitopes, storage stability, and reuse. The glucose-1-phosphate thymidylyltransferase RmlA is used as a model enzyme and chimeric proteins are constructed by translational fusion of rmlA to the C-terminus of truncated forms of sgsE (rSgsE (131-903), rSgsE(331-903)) and used for the construction of three principal types of biocatalysts: soluble (monomeric), self-assembled in aqueous solution, and recrystallized on negatively charged liposomes. Enzyme activity of the biocatalysts reaches up to 100 % compared to sole RmlA cloned from the same bacterium.

View Article and Find Full Text PDF

Crystalline monomolecular cell surface layers, S-layers, are one of the most common outermost cell envelope components of the prokaryotic organisms (bacteria and archaeda) that protects them from competitive habitats. Since isolated S-protein subunits are able to re-assemble into crystalline arrays on lipid films and solid supports making biomimetic surfaces, S-layer technology is currently used in nanobiotechnology. An important aspect of the biomimetic surfaces built with S-layers is their stability under extreme solvent conditions or temperature.

View Article and Find Full Text PDF