Publications by authors named "Jacqueline Ferris"

Alterations in the oocyte's environment can negatively affect embryo development. Oocyte quality, which can determine embryonic viability, is easily perturbed, thus factors affecting normal oocyte maturation are a concern. Bisphenol A (BPA) is an endocrine disrupting chemical that elicits a variety of reproductive effects.

View Article and Find Full Text PDF

Bisphenol A (BPA) exposure in humans is widespread, and BPA has been detected in a variety of samples including follicular fluid. BPA levels have been found to negatively correlate with the developmental potential of oocytes in women undergoing in vitro fertilization and to induce meiotic abnormalities experimentally in human and mouse models. BPA may detrimentally affect oocyte maturation, and different concentrations of exposure can cause various outcomes.

View Article and Find Full Text PDF

Previous studies show that changes in estrogen (ER) and glucocorticoid receptor (GR) function in rainbow trout (Oncorhynchus mykiss) oocytes modulate the growth performance phenotype of embryo and juvenile progeny; the present study was undertaken to determine whether this altered growth performance is associated with changes in the expression of several growth-related genes in early-stage embryos. Unfertilized oocytes were incubated in the presence of various combinations of GR and ER agonists and antagonists; the oocytes were then fertilized and the expression of genes that encode for six nuclear receptor superfamily (NRS) proteins (GR1, GR2, ERα, ERβ, TRα, and TRβ) and the two IGF peptides (IGF1 and IGF2) were measured in the 7-, 13-, and 26-dpf embryos. By day 26 of embryogenesis, the expression of the six NRS-related genes of interest and that of igf2 were significantly enhanced in embryos reared from ER agonist- or ER antagonist-treated oocytes, regardless of whether the GR agonist, cortisol, was also included in the initial oocyte incubation medium.

View Article and Find Full Text PDF