Publications by authors named "Jacqueline F L Santos"

Article Synopsis
  • * The study compared these electrodes to traditional Ag/AgCl reference electrodes, finding that while Ag/AgCl showed greater charge transfer resistance, the carbon/graphene electrodes maintained comparable sensitivity and performance when lactate oxidase was used in the setup.
  • * Future investigations are necessary to address the reduction in electric current observed with human plasma, indicating potential issues with analyte detection sensitivity due to biological interferents.
View Article and Find Full Text PDF

The indiscriminate use of pesticides in agriculture demands the development of devices capable of monitoring contaminations in food supplies, in the environment and biological fluids. Simplicity, easy handling, high sensitivities, and low limits-of-detection (LOD) and quantification are some of the required properties for these devices. In this work, we evaluated the effect of incorporating gold nanoparticles into indigo carmine-doped polypyrrole during the electropolymerization of films for use as an acetylcholinesterase (AChE) enzyme-based biosensor.

View Article and Find Full Text PDF

Environmentally friendly methods for silver nanoparticles (AgNPs) synthesis without the use of hazardous chemicals have recently drawn attention. In this work, AgNPs have been synthesized by microwave irradiation using only honey solutions or aqueous fresh pink radish extracts. The concentrations of honey, radish extract, AgNO and pH were varied.

View Article and Find Full Text PDF

Gold nanoparticles (AuNPs) are attractive structures for biosensing, most due to different properties at nanoscale and biocompatibility. Localized surface plasmon resonance (LSPR) is one of these properties; LSPR enable the electromagnetic field enhancement closer to metallic surface, which allows surface-enhanced spectroscopies, like surface enhanced fluorescence (SEF). In this study, an immuno-biosensor based on gold nanorods (AuNRs) and SEF was constructed for simple and fast analysis to detect albumin antibody (anti-BSA) using antigen-antibody (anti-BSA/BSA) interaction as the biorecognition model.

View Article and Find Full Text PDF

A 3D reduced graphene oxide (3D-rGO), a self-supported, efficient, and low-cost sorbent, was synthesised and employed in a solid-phase extraction (SPE) cartridge. As a proof of concept, it was applied to remove diclofenac from aqueous solution. After applying statistical methods to systematically investigate key parameters for optimizing the 3D-rGO cartridge performance, it reached removal and elution efficiencies of 100 % and 90 %, respectively.

View Article and Find Full Text PDF

The development of efficient advanced functional materials is highly dependent on properties such as morphology, crystallinity, and surface functionality. In this work, hierarchical flowerlike nanostructures of SrTiO have been synthesized by a simple template-free solvothermal method involving poly(vinylpyrrolidone) (PVP). Molecular dynamics simulations supported by structural characterization have shown that PVP preferentially adsorbs on {110} facets, thereby promoting the {100} facet growth.

View Article and Find Full Text PDF

Biosensors presenting high sensitivity for the detection of biomolecules are very promising for diseases diagnosis. Nowadays, there is a need for the development of biosensors with fast, trustworthy diagnosis and mostly with low cost, mainly for applications in developing countries. Label-free plasmonic biosensors are good candidates to reach out all these characteristics due to the possibility of spectral tunability, fast sensor response, real-time detection, strong enhancement of the local electric field and excellent adaptability to assemble different nanobiotechnology architectures.

View Article and Find Full Text PDF