Corticostriatal projection neurons from prelimbic medial prefrontal cortex to the nucleus accumbens core critically regulate drug-seeking behaviors, yet the underlying encoding dynamics whereby these neurons contribute to drug seeking remain elusive. Here we use two-photon calcium imaging to visualize the activity of corticostriatal neurons in mice from the onset of heroin use to relapse. We find that the activity of these neurons is highly heterogeneous during heroin self-administration and seeking, with at least 8 distinct neuronal ensembles that display both excitatory and inhibitory encoding dynamics.
View Article and Find Full Text PDFThere is a significant co-occurrence of opioid use disorder (OUD) and post-traumatic stress disorder (PTSD) in clinical populations. However, the neurobiological mechanisms linking chronic opioid use, withdrawal, and the development of PTSD are poorly understood. Our previous research has shown that proinflammatory cytokines, expressed primarily by astrocytes in the dorsal hippocampus (DH), play a role in the development of heroin withdrawal-enhanced fear learning (HW-EFL), an animal model of PTSD-OUD comorbidity.
View Article and Find Full Text PDFLack of behavioral suppression typifies substance use disorders, yet the neural circuit underpinnings of drug-induced behavioral disinhibition remain unclear. Here, we employ deep-brain two-photon calcium imaging in heroin self-administering mice, longitudinally tracking adaptations within a paraventricular thalamus to nucleus accumbens behavioral inhibition circuit from the onset of heroin use to reinstatement. We find that select thalamo-accumbal neuronal ensembles become profoundly hypoactive across the development of heroin seeking and use.
View Article and Find Full Text PDFSuppression of dangerous or inappropriate reward-motivated behaviors is critical for survival, whereas therapeutic or recreational opioid use can unleash detrimental behavioral actions and addiction. Nevertheless, the neuronal systems that suppress maladaptive motivated behaviors remain unclear, and whether opioids disengage those systems is unknown. In a mouse model using two-photon calcium imaging in vivo, we identify paraventricular thalamostriatal neuronal ensembles that are inhibited upon sucrose self-administration and seeking, yet these neurons are tonically active when behavior is suppressed by a fear-provoking predator odor, a pharmacological stressor, or inhibitory learning.
View Article and Find Full Text PDFBackground: Alcohol use disorder (AUD) and post-traumatic stress disorder (PTSD) are highly comorbid, yet there is a lack of preclinical research investigating how prior ethanol (EtOH) dependence influences the development of a PTSD-like phenotype. Furthermore, the neuroimmune system has been implicated in the development of both AUD and PTSD, but the extent of glial involvement in this context remains unclear. A rodent model was developed to address this gap in the literature.
View Article and Find Full Text PDFComput Struct Biotechnol J
August 2022
Astrocytes are critical components of neural circuits positioned in close proximity to the synapse, allowing them to rapidly sense and respond to neuronal activity. One repeatedly observed biomarker of astroglial activation is an increase in intracellular Ca levels. These astroglial Ca signals are often observed spreading throughout various cellular compartments from perisynaptic astroglial processes, to major astrocytic branches and on to the soma or cell body.
View Article and Find Full Text PDFHuman immunodeficiency virus type 1 (HIV-1) is known to provoke microglial immune responses which likely play a paramount role in the development of chronic neuroinflammatory conditions and neuronal damage related to HIV-1 associated neurocognitive disorders (HAND). In particular, HIV-1 Tat protein is a proinflammatory neurotoxin which predisposes neurons to synaptodendritic injury. Drugs targeting the degradative enzymes of endogenous cannabinoids have shown promise in reducing inflammation with minimal side effects in rodent models.
View Article and Find Full Text PDFThere is significant comorbidity of opioid use disorder (OUD) and post-traumatic stress disorder (PTSD) in clinical populations. However, the neurobiological mechanisms underlying the relationship between chronic opioid use and withdrawal and development of PTSD are poorly understood. Our previous work identified that chronic escalating heroin administration and withdrawal can produce enhanced fear learning, an animal model of hyperarousal, and is associated with an increase in dorsal hippocampal (DH) interleukin-1β (IL-1β).
View Article and Find Full Text PDFOpioids and opioid-conditioned stimuli (CS) negatively alter host immunity, impairing the response to pathogens during opioid use and following drug cessation. Using male rats, our laboratory has determined that heroin or heroin-CS exposure preceding a lipopolysaccharide (LPS) challenge markedly suppresses normal induction of peripheral pro-inflammatory biomarkers. Presently, it is unknown if these heroin-induced and -conditioned effects extend to the female immune response.
View Article and Find Full Text PDFPsychopharmacology (Berl)
December 2020
Converging evidence suggests opioid abuse can increase the incidence and severity of post-traumatic stress disorder (PTSD) in clinical populations. Interestingly, opioid withdrawal alone can produce symptoms similar to those of PTSD. Despite this association, the neural mechanisms underlying the relationship of opioid abuse, withdrawal, and PTSD is poorly understood.
View Article and Find Full Text PDFThe physiological and motivational effects of heroin and other abused drugs become associated with environmental (contextual) stimuli during repeated drug use. As a result, these contextual stimuli gain the ability to elicit drug-like conditioned effects. For example, after context-heroin pairings, exposure to the heroin-paired context alone produces similar effects on peripheral immune function as heroin itself.
View Article and Find Full Text PDFRepeated pairings of heroin and a context results in Pavlovian associations which manifest as heroin-conditioned appetitive responses and peripheral immunomodulation upon re-exposure to heroin-paired conditioned stimuli (CS). The dorsal hippocampus (DH) plays a key role in the neurocircuitry governing these context-heroin associations. Within the DH, expression of the pro-inflammatory cytokine interleukin-1β (IL-1β) is required for heroin-conditioned peripheral immunomodulation to occur.
View Article and Find Full Text PDFMaladaptive behavioral outcomes following stress have been associated with immune dysregulation. For example, we have previously reported that stress-induced dorsal hippocampal interleukin-1β signaling is critical to the development of stress-enhanced fear learning (SEFL). In parallel, astroglial signaling has been linked to the development of post-traumatic stress disorder (PTSD)-like phenotypes and our most recent studies have revealed astrocytes as the predominant cellular source of stress-induced IL-1β.
View Article and Find Full Text PDFAcute alcohol intoxication induces significant alterations in brain cytokines. Since stress challenges also profoundly impact central cytokine expression, these experiments examined the influence of acute and chronic stress on ethanol-induced brain cytokine responses. In Experiment 1, adult male rats were exposed to acute footshock.
View Article and Find Full Text PDFPost-traumatic stress disorder (PTSD) is associated with immune dysregulation. We have previously shown that severe stress exposure in a preclinical animal model of the disorder, stress-enhanced fear learning (SEFL), is associated with an increase in hippocampal interleukin-1β (IL-1β) and that blocking central IL-1 after the severe stress prevents the development of SEFL. Here, we tested whether blocking hippocampal IL-1 signaling is sufficient to prevent enhanced fear learning and identified the cellular source of stress-induced IL-1β in this region.
View Article and Find Full Text PDFAlcohol induces widespread changes in cytokine expression, with recent data from our laboratory having demonstrated that, during acute ethanol intoxication, adult rats exhibit consistent increases in interleukin (IL)-6 mRNA expression in several brain regions, while showing reductions in IL-1 and TNFα expression. Given evidence indicating that adolescence may be an ontogenetic period in which some neuroimmune processes and cells may not yet have fully matured, the purpose of the current experiments was to examine potential age differences in the central cytokine response of adolescent (P31-33days of age) and adult (69-71days of age) rats to either an acute immune (lipopolysaccharide; LPS) or non-immune challenge (ethanol). In Experiment 1, male Sprague-Dawley rats were given an intraperitoneal (i.
View Article and Find Full Text PDF