Neutral lipids have been implicated in a host of potentially debilitating human diseases, such as heart disease, type-2 diabetes, and metabolic syndrome. Matrix-assisted laser desorption ionization (MALDI), the method-of-choice for mass spectrometry imaging (MSI), has led to remarkable success in imaging several lipid classes from biological tissue sections. However, due to ion suppression by phospholipids, MALDI has limited ability to efficiently ionize and image neutral lipids, such as triglycerides (TGs).
View Article and Find Full Text PDFMass spectrometry imaging (MSI) is used increasingly to simultaneously detect a broad range of biomolecules while mapping their spatial distributions within biological tissue sections. Matrix-assisted laser desorption ionization (MALDI) is recognized as the method-of-choice for MSI applications due in part to its broad molecular coverage. In spite of the remarkable advantages offered by MALDI, imaging of neutral lipids, such as triglycerides (TGs), from tissue has remained a significant challenge due to ion suppression of TGs by phospholipids, e.
View Article and Find Full Text PDFMass spectrometry imaging (MSI) is capable of detection and identification of diverse classes of compounds in brain tissue sections, whereas simultaneously mapping their spatial distributions. Given the vast array of chemical components present in neurological systems, as well as the innate diversity within molecular classes, MSI platforms capable of detecting a wide array of species are useful for achieving a more comprehensive understanding of their biological roles and significance. Currently, matrix-assisted laser desorption ionization (MALDI) is the method of choice for the molecular imaging of brain samples by mass spectrometry.
View Article and Find Full Text PDF