B cells play a critical role in host defense, producing antibodies in response to microbial infection. An inability to produce an effective antibody response leaves affected individuals prone to serious infection; therefore, proper B-cell development is essential to human health. B-cell development begins in the bone marrow and progresses through various stages until maturation occurs in the spleen.
View Article and Find Full Text PDFClass switch recombination generates distinct antibody isotypes critical to a robust adaptive immune system, and defects are associated with autoimmune disorders and lymphomagenesis. Transcription is required during class switch recombination to recruit the cytidine deaminase AID-an essential step for the formation of DNA double-strand breaks-and strongly induces the formation of R loops within the immunoglobulin heavy-chain locus. However, the impact of R loops on double-strand break formation and repair during class switch recombination remains unclear.
View Article and Find Full Text PDFConflicts between transcription and replication machinery are a potent source of replication stress and genome instability; however, no technique currently exists to identify endogenous genomic locations prone to transcription-replication interactions. Here, we report a novel method to identify genomic loci prone to transcription-replication interactions termed transcription-replication immunoprecipitation on nascent DNA sequencing, TRIPn-Seq. TRIPn-Seq employs the sequential immunoprecipitation of RNA polymerase 2 phosphorylated at serine 5 (RNAP2s5) followed by enrichment of nascent DNA previously labeled with bromodeoxyuridine.
View Article and Find Full Text PDFTranscription-replication interactions occur when DNA replication encounters genomic regions undergoing transcription. Both replication and transcription are essential for life and use the same DNA template making conflicts unavoidable. R-loops, DNA supercoiling, DNA secondary structure, and chromatin-binding proteins are all potential obstacles for processive replication or transcription and pose an even more potent threat to genome integrity when these processes co-occur.
View Article and Find Full Text PDFGenome instability is not only a hallmark of cancer, it is necessary for its initiation and evolution, and naturally accumulates as cells age. Replication stress is a potent source of genome instability found in many tumor types [1]. Chromosomal fragile sites are genomic loci highly prone to DNA damage specifically from replication stress and are frequently mutated in cancer [2-4]2-4].
View Article and Find Full Text PDFChromosomal fragile sites are genomic loci sensitive to replication stress which accumulate high levels of DNA damage, and are frequently mutated in cancers. Fragile site damage is thought to arise from the aberrant repair of spontaneous replication stress, however successful fragile site repair cannot be calculated using existing techniques. Here, we report a new assay measuring recombination-mediated repair at endogenous genomic loci by combining a sister chromatid exchange (SCE) assay with fluorescent in situ hybridization (SCE-FISH).
View Article and Find Full Text PDFIn Saccharomyces cerevisiae, absence of the checkpoint kinase Mec1 (ATR) is viable upon mutations that increase the activity of the ribonucleotide reductase (RNR) complex. Whether this pathway is conserved in mammals remains unknown. Here we show that cells from mice carrying extra alleles of the RNR regulatory subunit RRM2 (Rrm2(TG)) present supraphysiological RNR activity and reduced chromosomal breakage at fragile sites.
View Article and Find Full Text PDFCell Mol Life Sci
December 2014
Nuclear DNA replication requires the concerted action of hundreds of proteins to efficiently unwind and duplicate the entire genome while also retaining epigenetic regulatory information. Initiation of DNA replication is tightly regulated, rapidly firing thousands of origins once the conditions to promote rapid and faithful replication are in place, and defects in replication initiation lead to proliferation defects, genome instability, and a range of developmental abnormalities. Interestingly, DNA replication in metazoans initiates in actively transcribed DNA, meaning that replication initiation occurs in DNA that is co-occupied with tens of thousands of poised and active RNA polymerase complexes.
View Article and Find Full Text PDFDNA double-strand breaks (DSBs) in B lymphocytes arise stochastically during replication or as a result of targeted DNA damage by activation-induced cytidine deaminase (AID). Here we identify recurrent, early replicating, and AID-independent DNA lesions, termed early replication fragile sites (ERFSs), by genome-wide localization of DNA repair proteins in B cells subjected to replication stress. ERFSs colocalize with highly expressed gene clusters and are enriched for repetitive elements and CpG dinucleotides.
View Article and Find Full Text PDF53BP1 is a DNA damage protein that forms phosphorylated H2AX (γ-H2AX) dependent foci in a 1 Mb region surrounding DNA double-strand breaks (DSBs). In addition, 53BP1 promotes genomic stability by regulating the metabolism of DNA ends. We have compared the joining rates of paired DSBs separated by 1.
View Article and Find Full Text PDFRegulation of the repair of DNA double-strand breaks by homologous recombination is extremely important for both cell viability and the maintenance of genomic integrity. Modulation of double-strand break repair in the yeast Saccharomyces cerevisiae involves controlling the recruitment of one of the central recombination proteins, Rad52, to sites of DNA lesions. The Rad52 protein, which plays a role in strand exchange and the annealing of single strand DNA, is positively regulated upon entry into S phase, repressed during the intra-S phase checkpoint, and undergoes posttranslational modification events such as phosphorylation and sumoylation.
View Article and Find Full Text PDFRecruitment of the homologous recombination machinery to sites of double-strand breaks is a cell cycle-regulated event requiring entry into S phase and CDK1 activity. Here, we demonstrate that the central recombination protein, Rad52, forms foci independent of DNA replication, and its recruitment requires B-type cyclin/CDK1 activity. Induction of the intra-S-phase checkpoint by hydroxyurea (HU) inhibits Rad52 focus formation in response to ionizing radiation.
View Article and Find Full Text PDFDouble-strand breaks (DSBs) are potentially lethal DNA lesions that can be repaired by either homologous recombination (HR) or nonhomologous end-joining (NHEJ). We show that DSBs induced by ionizing radiation (IR) are efficiently processed for HR and bound by Rfa1 during G1, while endonuclease-induced breaks are recognized by Rfa1 only after the cell enters S phase. This difference is dependent on the DNA end-binding Yku70/Yku80 complex.
View Article and Find Full Text PDFDNA repair is an essential process for preserving genome integrity in all organisms. In eukaryotes, recombinational repair is choreographed by multiprotein complexes that are organized into centers (foci). Here, we analyze the cellular response to DNA double-strand breaks (DSBs) and replication stress in Saccharomyces cerevisiae.
View Article and Find Full Text PDF