The transcriptional co-repressor C-terminal binding protein (CtBP) interacts with a number of repressor proteins and chromatin modifying enzymes. How the biochemical properties including binding of dinucleotide, oligomerization, and dehydrogenase domains of CtBP1 direct the assembly of a functional co-repressor to influence gene expression is not well understood. In the current study we demonstrate that CtBP1 assembles into a tetramer in a NAD(H)-dependent manner, proceeding through a dimeric intermediate.
View Article and Find Full Text PDFThe launch of the eagle-i Consortium, a collaborative network for sharing information about research resources, such as protocols and reagents, provides a vivid demonstration of the challenges that researchers, libraries and institutions face in making their data available to others.
View Article and Find Full Text PDFCorrect folding of the collagen triple helix requires a self-association step which selects and binds α-chains into trimers. Here we report the crystal structure of the trimerization domain of human type XV collagen. The trimerization domain of type XV collagen contains three monomers each composed of four β-sheets and an α-helix.
View Article and Find Full Text PDFWe have investigated whether reverse signaling via a glycosyl-phosphatidylinositol (GPI)-linked ephrin controls the behavior of migratory neurons in vivo. During the formation of the enteric nervous system (ENS) in the moth Manduca, approximately 300 neurons [enteric plexus (EP) cells] migrate onto the midgut via bilaterally paired muscle bands but avoid adjacent midline regions. As they migrate, the EP cells express a single ephrin ligand (MsEphrin; a GPI-linked ligand), whereas the midline cells express the corresponding Eph receptor (MsEph).
View Article and Find Full Text PDFMutY, an adenine glycosylase, initiates the critical repair of an adenine:8-oxo-guanine base pair in DNA arising from polymerase error at the oxidatively damaged guanine. Here we demonstrate for the first time, using presteady-state active site titrations, that MutY assembles into a dimer upon binding substrate DNA and that the dimer is the functionally active form of the enzyme. Additionally, we observed allosteric inhibition of glycosylase activity in the dimer by the concurrent binding of two lesion mispairs.
View Article and Find Full Text PDF