We report on the fabrication of a single-electron transistor based on ferritin using wide self-aligned nanogap devices. A local gate below the gap area enables three-terminal electrical measurements, showing the Coulomb blockade in good agreement with the single-electron tunneling theory. Comparison with this theory allows extraction of the tunnel resistances, capacitances, and gate coupling.
View Article and Find Full Text PDFFerritin, the major iron storage protein in organisms, stores iron in the form of iron oxyhydroxide most likely involving phosphorous as a constituent, the mineral form of which is not well understood. Therefore, the question of how the 2000 iron atoms in the ferritin core are magnetically coupled is still largely open. The ferritin core, with a diameter of 5-8 nm, is encapsulated in a protein shell that also catalyzes the uptake of iron and protects the core from outside interactions.
View Article and Find Full Text PDFWe report on the fabrication of single-electron devices based on horse-spleen ferritin particles. At low temperatures the current vs. voltage characteristics are stable, enabling the acquisition of reproducible data that establishes the Coulomb blockade as the main transport mechanism through them.
View Article and Find Full Text PDF