Publications by authors named "Jacqueline A Brosnan"

Pancreatic cancer is a highly lethal tumor type for which there are few viable therapeutic options. It is also caused by the accumulation of mutations in a variety of genes. These genetic alterations can be grouped into those that accumulate during pancreatic intraepithelial neoplasia (precursor lesions) and thus are present in all cells of the infiltrating carcinoma, and those that accumulate specifically within the infiltrating carcinoma during subclonal evolution, resulting in genetic heterogeneity.

View Article and Find Full Text PDF

Purpose: Genetic alterations of KRAS, CDKN2A, TP53, and SMAD4 are the most frequent events in pancreatic cancer. We determined the extent to which these 4 alterations are coexistent in the same carcinoma, and their impact on patient outcome.

Experimental Design: Pancreatic cancer patients who underwent an autopsy were studied (n = 79).

View Article and Find Full Text PDF

Purpose: Pancreatic cancer is the fourth cause of death from cancer in the western world. Majority of patients present with advanced unresectable disease responding poorly to most chemotherapeutic agents. Chemotherapy for pancreatic cancer might be improved by adjusting it to individual genetic profiles.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDA) remains a lethal malignancy despite much progress concerning its molecular characterization. PDA tumours harbour four signature somatic mutations in addition to numerous lower frequency genetic events of uncertain significance. Here we use Sleeping Beauty (SB) transposon-mediated insertional mutagenesis in a mouse model of pancreatic ductal preneoplasia to identify genes that cooperate with oncogenic Kras(G12D) to accelerate tumorigenesis and promote progression.

View Article and Find Full Text PDF

Conventional mutation theories do not explain (1) why the karyotypes of metastases are related to those of parental cancers but not to those of metastases of other cancers and (2) why cancers metastasize at rates that often far exceed those of conventional mutations. To answer these questions, we advance here the theory that metastases are autonomous subspecies of cancers, rather than mutations. Since cancers are species with intrinsically flexible karyotypes, they can generate new subspecies by spontaneous karyotypic rearrangements.

View Article and Find Full Text PDF

Cancer is a disease caused by the accumulation of genetic alterations in association with successive waves of clonal expansion. Mapping of the human genome sequence, in conjunction with technical advances in the ability to sequence entire genomes, have provided new insight into the mutational spectra and genetic events associated with clonal evolution of cancer. Moving forward, a clearer understanding of those alterations that undergo positive and negative selection throughout carcinogenesis and leading to metastatic dissemination would provide a boon not only to our understanding of cancer evolution, but to the development of potential targets for therapeutic intervention as well.

View Article and Find Full Text PDF