Purpose To compare the effectiveness of weak supervision (ie, with examination-level labels only) and strong supervision (ie, with image-level labels) in training deep learning models for detection of intracranial hemorrhage (ICH) on head CT scans. Materials and Methods In this retrospective study, an attention-based convolutional neural network was trained with either local (ie, image level) or global (ie, examination level) binary labels on the Radiological Society of North America (RSNA) 2019 Brain CT Hemorrhage Challenge dataset of 21 736 examinations (8876 [40.8%] ICH) and 752 422 images (107 784 [14.
View Article and Find Full Text PDFAs modern complex neural networks keep breaking records and solving harder problems, their predictions also become less and less intelligible. The current lack of interpretability often undermines the deployment of accurate machine learning tools in sensitive settings. In this work, we present a model-agnostic explanation method for image classification based on a hierarchical extension of Shapley coefficients-Hierarchical Shap (h-Shap)-that resolves some of the limitations of current approaches.
View Article and Find Full Text PDFNeuromorphology is crucial to identifying neuronal subtypes and understanding learning. It is also implicated in neurological disease. However, standard morphological analysis focuses on macroscopic features such as branching frequency and connectivity between regions, and often neglects the internal geometry of neurons.
View Article and Find Full Text PDFThe brain demands a significant fraction of the energy budget in an organism; in humans, it accounts for 2% of the body mass, but utilizes 20% of the total energy metabolized. This is due to the large load required for information processing; spiking demands from neurons are high but are a key component to understanding brain functioning. Astrocytic brain cells contribute to the healthy functioning of brain circuits by mediating neuronal network energy and facilitating the formation and stabilization of synaptic connectivity.
View Article and Find Full Text PDF