The search for alternative ways to give a second life to materials paved the way for detailed investigation into three silica-polyethylenimine (Si-PEI) materials for the purpose of CO adsorption in carbon capture and storage. A solvent extraction procedure was investigated to recover degraded PEIs and silica, and concomitantly, pyrolysis was evaluated to obtain valuable chemicals such as alkylated pyrazines. An array of thermal (TGA, Py-GC-MS), mechanical (rheology), and spectroscopical (ATR-FTIR, H-C-NMR) methods were applied to PEIs extracted with methanol to determine the relevant physico-chemical features of these polymers when subjected to degradation after use in CO capture.
View Article and Find Full Text PDFGraphene (G) can effectively enhance polymers' and polymer composites' electric, thermal, and mechanical properties. Nanofibrous mats have been demonstrated to significantly increase the interlaminar fracture toughness of composite laminates, hindering delamination and, consequently, making such materials safer and more sustainable thanks to increased service life. In the present paper, poly(ethylene oxide) (PEO), polycaprolactone (PCL), and Nylon 66 nanofibers, plain or reinforced with G, were integrated into epoxy-matrix Carbon Fiber Reinforced Polymers (CFRPs) to evaluate the effect of polymers and polymers + G on the laminate mechanical properties.
View Article and Find Full Text PDFDelamination is the most severe weakness affecting all composite materials with a laminar structure. Nanofibrous mat interleaving is a smart way to increase the interlaminar fracture toughness: the use of thermoplastic polymers, such as poly(ε-caprolactone) and polyamides (Nylons), as nonwovens is common and well established. Here, electrospun polyethylene oxide (PEO) nanofibers are proposed as reinforcing layers for hindering delamination in epoxy-based carbon fiber-reinforced polymer (CFRP) laminates.
View Article and Find Full Text PDF