Publications by authors named "Jacopo Magistretti"

Key Points: Vestibular type I and type II hair cells and their afferent fibres send information to the brain regarding the position and movement of the head. The characteristic feature of type I hair cells is the expression of a low-voltage-activated outward rectifying K current, I , whose biophysical properties and molecular identity are still largely unknown. In vitro, the afferent nerve calyx surrounding type I hair cells causes unstable intercellular K concentrations, altering the biophysical properties of I .

View Article and Find Full Text PDF

Neurogenesis impairment is considered a major determinant of the intellectual disability that characterizes Down syndrome (DS), a genetic condition caused by triplication of chromosome 21. Previous evidence obtained in the Ts65Dn mouse model of DS showed that the triplicated gene APP (amyloid precursor protein) is critically involved in neurogenesis alterations. In particular, excessive levels of AICD (amyloid precursor protein intracellular domain) resulting from APP cleavage by gamma-secretase increase the transcription of Ptch1, a Sonic Hedgehog (Shh) receptor that keeps the mitogenic Shh pathway repressed.

View Article and Find Full Text PDF

Neurodegenerative diseases are disorders related to the degeneration of central neurons that gradually lead to various, severe alterations of cognitive and/or motor functions. Currently, for no such diseases does any pharmacological treatment exist able to arrest its progression. Riluzole (1) is a small molecule able to interfere with multiple cellular and molecular mechanisms of neurodegeneration, and is the only approved treatment of amyotrophic lateral sclerosis (ALS), the progression of which proved to significantly slow, thus increasing somewhat average survival.

View Article and Find Full Text PDF

Two types of principal neurons, stellate cells and pyramidal-like cells, are found in medial entorhinal-cortex (mEC) layer II, and are believed to represent two distinct channels of information processing and transmission in the entorhinal cortex-hippocampus network. In this study, we found that depolarizing afterpotentials (DAPs) that follow single action potentials (APs) evoked from various levels of holding membrane voltage (Vh ) show distinct properties in the two cells types. In both, an evident DAP followed the AP at near-threshold Vh levels, and was accompanied by an enhancement of excitability and spike-timing precision.

View Article and Find Full Text PDF

Voltage-gated calcium (Cav1.3) channels in mammalian inner hair cells (IHCs) open in response to sound and the resulting Ca(2+) entry triggers the release of the neurotransmitter glutamate onto afferent terminals. At low to mid sound frequencies cell depolarization follows the sound sinusoid and pulses of transmitter release from the hair cell generate excitatory postsynaptic currents (EPSCs) in the afferent fiber that translate into a phase-locked pattern of action potential activity.

View Article and Find Full Text PDF

Hearing relies on faithful signal transmission by cochlear inner hair cells (IHCs) onto auditory fibres over a wide frequency and intensity range. Exocytosis at IHC ribbon synapses is triggered by Ca(2+) inflow through Ca(V)1.3 (L-type) Ca(2+) channels.

View Article and Find Full Text PDF

Auditory information transfer to afferent neurons relies on precise triggering of neurotransmitter release at the inner hair cell (IHC) ribbon synapses by Ca²⁺ entry through CaV1.3 Ca²⁺ channels. Despite the crucial role of CaV1.

View Article and Find Full Text PDF

Down syndrome (DS) is a high-incidence genetic pathology characterized by severe impairment of cognitive functions, including declarative memory. Impairment of hippocampus-dependent long-term memory in DS appears to be related to anatomo-functional alterations of the hippocampal trisynaptic circuit formed by the dentate gyrus (DG) granule cells - CA3 pyramidal neurons - CA1 pyramidal neurons. No therapies exist to improve cognitive disability in individuals with DS.

View Article and Find Full Text PDF

Sub- and near-threshold voltage-dependent Na+ currents (VDSCs) are of major importance in determining the electrical properties of medial entorhinal cortex (mEC) layer-II neurons. Developmental changes in the ability of mEC layer-II stellate cells (SCs) to generate Na+ -dependent, subthreshold electrical events have been reported between P14 and P18. In this study we examined the modifications occurring in the various components of VDSCs during postnatal development of mEC SCs.

View Article and Find Full Text PDF

Whole-cell, patch-clamp recordings were carried out in acutely dissociated neurons from entorhinal cortex (EC) layer II to study the effects of Zn(2+) on Na(+) current kinetics and voltage dependence. In the presence of 200 μM extracellular Cd(2+) to abolish voltage-dependent Ca(2+) currents, and 100 mM extracellular Na(+), 1 mM Zn(2+) inhibited the transient Na(+) current, I (NaT), only to a modest degree (~17% on average). A more pronounced inhibition (~36%) was induced by Zn(2+) when extracellular Na(+) was lowered to 40 mM.

View Article and Find Full Text PDF

Cerebellar granule (CG) cells generate high-frequency action potentials that have been proposed to depend on the unique properties of their voltage-gated ion channels. To address the in vivo function of Nav1.6 channels in developing and mature CG cells, we combined the study of the developmental expression of Nav subunits with recording of acute cerebellar slices from young and adult granule-specific Scn8a KO mice.

View Article and Find Full Text PDF

A series of amidine, thiourea, and guanidine derivatives of 2-amino-6-(trifluoromethoxy)benzothiazole termed 2, 3, and 4, respectively, and structurally related to riluzole, a neuroprotective drug in many animal models of brain disease, have been synthesized. The biological activity of compounds 2a-e, 3a-f, and 4a,b was preliminarily tested by means of an in vitro protocol of ischemia/reperfusion injury. The results demonstrated that 2c and 3a-d significantly attenuated neuronal injury.

View Article and Find Full Text PDF
Article Synopsis
  • Mammalian cochlear inner hair cells (IHCs) play critical roles in processing signals during development and sound stimuli in adults, with neurotransmitter release controlled by L-type Ca(V)1.3 Ca(2+) channels.
  • In immature mouse IHCs, these Ca(2+) channels co-localize with about half of the ribbon synapses and activate at 70 mV, allowing for spontaneous Ca(2+) activity crucial for the cell's function.
  • The studied Ca(2+) channels exhibit low open probability and voltage-dependent behavior, potentially linking their properties to the frequency and amplitude of excitatory postsynaptic currents (EPSCs) in auditory pathways.
View Article and Find Full Text PDF

In most neurons, Na+ channels in the axon are complemented by others localized in the soma and dendrites to ensure spike back-propagation. However, cerebellar granule cells are neurons with simplified architecture in which the dendrites are short and unbranched and a single thin ascending axon travels toward the molecular layer before bifurcating into parallel fibers. Here we show that in cerebellar granule cells, Na+ channels are enriched in the axon, especially in the hillock, but almost absent from soma and dendrites.

View Article and Find Full Text PDF

The resurgent Na(+) current (I(NaR)) is a component of neuronal voltage-dependent Na(+) currents that is activated by repolarization and is believed to result from an atypical path of Na(+)-channel recovery from inactivation. So far, I(NaR) has only been identified in a small number of central neuronal populations in the cerebellum, diencephalon, and brainstem. The possible presence and roles of I(NaR) in neurons of the cerebral cortex and temporal-lobe memory system are still uncharacterized.

View Article and Find Full Text PDF

Na(+)-channel activity recorded in cell-attached patches from entorhinal cortex neurons in the absence of gating-modifying drugs was examined to determine the possible occurrence of substate openings. Brief sojourns to subconductance levels were occasionally observed within prolonged ("persistent") burst openings. Subconductance occurrence and amplitude were determined following two distinct, complementary approaches: (1) direct visual inspection and (2) automated detection by application of a method that exploits the current variance of fixed-width tracing segments to sort amplitude estimations.

View Article and Find Full Text PDF

The perirhinal cortex (PRC) is a supra-modal cortical area that collects and integrates information originating from uni- and multi-modal neocortical regions and directed to the hippocampus. The mechanisms that underlie the specific excitable properties of the different PRC neuronal types are still largely unknown, and their elucidation may be important in understanding the integrative functions of PRC. In this study we investigated the expression and properties of resurgent Na(+) current (I(NaR)) in pyramidal neurones of rat PRC area 35 (layer II).

View Article and Find Full Text PDF

High-voltage-activated (HVA) Ca2+ currents were studied in acutely isolated neurons from rat entorhinal cortex (EC) layer II. Stellate and pyramidal cells, the two main neuronal types of this structure, were visually identified based on morphological criteria. HVA currents were recorded by applying the whole-cell, patch-clamp technique, using 5-mM Ba2+ as the charge carrier.

View Article and Find Full Text PDF

Cerebellar neurones show complex and differentiated mechanisms of action potential generation that have been proposed to depend on peculiar properties of their voltage-dependent Na+ currents. In this study we analysed voltage-dependent Na(+) currents of rat cerebellar granule cells (GCs) by performing whole-cell, patch-clamp experiments in acute rat cerebellar slices. A transient Na+ current (I(NaT)) was always present and had the properties of a typical fast-activating/inactivating Na+ current.

View Article and Find Full Text PDF

In entorhinal cortex layer II neurons, muscarinic receptor activation promotes depolarization via activation of a nonspecific cation current (I(NCM)). Under muscarinic influence, these neurons also develop changes in excitability that result in activity-dependent induction of delayed firing and bursting activity. To identify the membrane processes underlying these phenomena, we examined whether I(NCM) may undergo activity-dependent regulation.

View Article and Find Full Text PDF

A multicompartmental biophysical model of entorhinal cortex layer II stellate cells was developed to analyze the ionic basis of physiological properties, such as subthreshold membrane potential oscillations, action potential clustering, and the medium afterhyperpolarization. In particular, the simulation illustrates the interaction of the persistent sodium current (I(Nap)) and the hyperpolarization activated inward current (Ih) in the generation of subthreshold membrane potential oscillations. The potential role of Ih in contributing to the medium hyperpolarization (mAHP) and rebound spiking was studied.

View Article and Find Full Text PDF

ATP has a long-lasting vasodilatory effect, possibly due to its capability to induce a prolonged increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)) in endothelial cells (EC) and activate constitutive nitric oxide synthase. However, contradictory data have been reported regarding the time course of ATP-evoked Ca(2+) signals in in situ EC. In particular, short-duration Ca(2+) signals have been reported, which might be thought to be unable to sustain a prolonged, NO-induced vasodilation.

View Article and Find Full Text PDF

The kinetic diversity of burst openings responsible for the persistent Na(+) current (I(NaP)) in entorhinal cortex neurons was examined by separately analyzing single bursts. Although remarkable kinetic variability was observed among bursts in terms of intraburst opening probability and mean open and closed times, the values of time constants describing intraburst open times (tau(o(b))s) and closed times (tau(c(b))s) were distributed around well-defined peaks. At -40 mV, tau(o(b)) peaks were found at approximately 0.

View Article and Find Full Text PDF

The ionic mechanisms underlying the termination of action-potential (AP) bursts and postburst afterhyperpolarization (AHP) in intrinsically bursting (IB) neocortical neurons were investigated by performing intracellular recordings in thin slices of rat sensorimotor cortex. The blockade of Ca(2+)-activated K(+) currents enhanced postburst depolarizing afterpotentials, but had inconsistent and minor effects on the amplitude and duration of AHPs. On the contrary, experimental conditions resulting in reduction of voltage-dependent Na(+) entry into the cells caused a significant decrease of AHP amplitude.

View Article and Find Full Text PDF

The gating properties of channels responsible for the generation of persistent Na(+) current (I(NaP)) in entorhinal cortex layer II principal neurons were investigated by performing cell-attached, patch-clamp experiments in acutely isolated cells. Voltage-gated Na(+)-channel activity was routinely elicited by applying 500-ms depolarizing test pulses positive to -60 mV from a holding potential of -100 mV. The channel activity underlying I(NaP) consisted of prolonged and frequently delayed bursts during which repetitive openings were separated by short closings.

View Article and Find Full Text PDF