Publications by authors named "Jacopo Lupi"

Xylopyranose is the principal monosaccharide unit of hemicellulose, one of the three major biopolymers of lignocellulosic biomass. Understanding its decomposition mechanism is increasingly relevant for thermochemical biorefinery research such as pyrolysis. Significant efforts have been made to study its chemical and structural properties using both computational and experimental methods.

View Article and Find Full Text PDF

This work analyzes the thermochemical kinetic influence of the most prominent functionalizations of the β-D-xylopyranose motif, specifically 4-methoxy, 5-carboxyl, and 2--acetyl, regarding the pyrolytic depolymerization mechanism. The gas-phase potential energy surface of the initial unimolecular decomposition reactions is computed with M06-2X/6-311++G(d,p), following which energies are refined using the G4 and CBS-QB3 composite methods. Rate constants are computed using the transition state theory.

View Article and Find Full Text PDF

Lignocellulosic biomass is an abundant renewable resource that can be upgraded to chemical and fuel products through a range of thermal conversion processes. Fast pyrolysis is a promising technology that uses high temperatures and fast heating rates to convert lignocellulose into bio-oils in high yields in the absence of oxygen. Hemicellulose is one of the three major components of lignocellulosic biomass and is a highly branched heteropolymer structure made of pentose, hexose sugars, and sugar acids.

View Article and Find Full Text PDF

A recently developed strategy for the computation at affordable cost of reliable barrier heights ruling reactions in the gas phase (junChS, [Barone, V.; 2021, 17, 4913-4928]) has been extended to the employment of explicitly correlated (F12) methods. A thorough benchmark based on a wide range of prototypical reactions shows that the new model (referred to as junChS-F12), which employs cost-effective revDSD-PBEP86-D3(BJ) reference geometries, has an improved performance with respect to its conventional counterpart and outperforms the most well-known model chemistries without the need of any empirical parameter and at an affordable computational cost.

View Article and Find Full Text PDF

The isomerization of hydrogen cyanide to hydrogen isocyanide on icy grain surfaces is investigated by an accurate composite method (jun-Cheap) rooted in the coupled cluster ansatz and by density functional approaches. After benchmarking density functional predictions of both geometries and reaction energies against jun-Cheap results for the relatively small model system HCN···(HO), the best performing DFT methods are selected. A large cluster containing 20 water molecules is then employed within a QM/QM' approach to include a realistic environment mimicking the surface of icy grains.

View Article and Find Full Text PDF

A recently developed model chemistry (denoted as junChS [Alessandrini, S.; et al. 988-1006]) has been extended to the employment of explicitly correlated (F12) methods.

View Article and Find Full Text PDF

A recently developed model chemistry (jun-Cheap) has been slightly modified and proposed as an effective, reliable, and parameter-free scheme for the computation of accurate reaction rates with special reference to astrochemical and atmospheric processes. Benchmarks with different sets of state-of-the-art energy barriers spanning a wide range of values show that, in the absence of strong multireference contributions, the proposed model outperforms the most well-known model chemistries, reaching a subchemical accuracy without any empirical parameter and with affordable computer times. Some test cases show that geometries, energy barriers, zero point energies, and thermal contributions computed at this level can be used in the framework of the master equation approach based on the ab initio transition-state theory for obtaining accurate reaction rates.

View Article and Find Full Text PDF

The atmospheric reaction of HS with Cl has been reinvestigated to check if, as previously suggested, only explicit dynamical computations can lead to an accurate evaluation of the reaction rate because of strong recrossing effects and the breakdown of the variational extension of transition state theory. For this reason, the corresponding potential energy surface has been thoroughly investigated, thus leading to an accurate characterization of all stationary points, whose energetics has been computed at the state of the art. To this end, coupled-cluster theory including up to quadruple excitations has been employed, together with the extrapolation to the complete basis set limit and also incorporating core-valence correlation, spin-orbit, and scalar relativistic effects as well as diagonal Born-Oppenheimer corrections.

View Article and Find Full Text PDF

The gas-phase formation and spectroscopic characteristics of ethanimine have been re-investigated as a paradigmatic case illustrating the accuracy of state-of-the-art quantum-chemical (QC) methodologies in the field of astrochemistry. According to our computations, the reaction between the amidogen, NH, and ethyl, CH, radicals is very fast, close to the gas-kinetics limit. Although the main reaction channel under conditions typical of the interstellar medium leads to methanimine and the methyl radical, the predicted amount of the two E,Z stereoisomers of ethanimine is around 10%.

View Article and Find Full Text PDF