Prions are deadly infectious agents made of PrP, a misfolded variant of the cellular prion protein (PrP) which self-propagates by inducing misfolding of native PrP. PrP can adopt different pathogenic conformations (prion strains), which can be resistant to potential drugs, or acquire drug resistance, hampering the development of effective therapies. We identified Zn(II)-BnPyP, a tetracationic porphyrin that binds to distinct domains of native PrP, eliciting a dual anti-prion effect.
View Article and Find Full Text PDFAlzheimer's disease (AD) is an irreversible neurodegenerative disorder that affects millions of people worldwide. AD pathogenesis is intricate. It primarily involves two main molecular players-amyloid-β (Aβ) and tau-which actually have an intrinsic trend to generate molecular assemblies that are toxic to neurons.
View Article and Find Full Text PDFBackground Brain injury and neurological deficit are consequences of cardiac arrest (CA), leading to high morbidity and mortality. Peripheral activation of the kynurenine pathway (KP), the main catabolic route of tryptophan metabolized at first into kynurenine, predicts poor neurological outcome in patients resuscitated after out-of-hospital CA. Here, we investigated KP activation in hippocampus and plasma of rats resuscitated from CA, evaluating the effect of KP modulation in preventing CA-induced neurological deficit.
View Article and Find Full Text PDFThe rapid spread of the pandemic caused by the SARS-CoV-2 virus has created an unusual situation, with rapid searches for compounds to interfere with the biological processes exploited by the virus. Doxycycline, with its pleiotropic effects, including anti-viral activity, has been proposed as a therapeutic candidate for COVID-19 and about twenty clinical trials have started since the beginning of the pandemic. To gain information on the activity of doxycycline against SARS-CoV-2 infection and clarify some of the conflicting clinical data published, we designed in vitro binding tests and infection studies with a pseudotyped virus expressing the spike protein, as well as a clinically isolated SARS-CoV-2 strain.
View Article and Find Full Text PDFFatal familial insomnia (FFI) is a dominantly inherited prion disease linked to the D178N mutation in the gene encoding the prion protein (PrP). Symptoms, including insomnia, memory loss and motor abnormalities, appear around 50 years of age, leading to death within two years. No treatment is available.
View Article and Find Full Text PDFBackground Ventilation with the noble gas argon (Ar) has shown neuroprotective and cardioprotective properties in different in vitro and in vivo models. Hence, the neuroprotective effects of Ar were investigated in a severe, preclinically relevant porcine model of cardiac arrest. Methods and Results Cardiac arrest was ischemically induced in 36 pigs and left untreated for 12 minutes before starting cardiopulmonary resuscitation.
View Article and Find Full Text PDFACS Chem Neurosci
November 2019
In this study natural-based complex polyphenols, obtained through a smart synthetic approach, have been evaluated for their ability to inhibit the formation of Aβ oligomers, the most toxic species causing synaptic dysfunction, neuroinflammation, and neuronal death leading to the onset and progression of Alzheimer's disease. In vitro neurotoxicity tests on primary hippocampal neurons have been employed to select nontoxic candidates. Solution NMR and molecular docking studies have been performed to clarify the interaction mechanism of Aβ with the synthesized polyphenol derivatives, and highlight the sterical and chemical requirements important for their antiaggregating activity.
View Article and Find Full Text PDFRepurposing doxycycline for the treatment of amyloidosis has recently been put forward because of the antiaggregating and anti-inflammatory properties of the drug. Most of the investigations of the therapeutic potential of doxycycline for neurodegenerative amyloidosis, e.g.
View Article and Find Full Text PDF3,4-Dichloro-N-benzamide (AH-7921) is a cyclohexyl-methylbenzamide derivative with analgesic activity, whose abuse was associated with several fatal intoxications, included in Schedule I of UN Single Convention on Narcotic Drugs. We validated an HPLC-MS/MS method to investigate its brain disposition and metabolism after single and repeated injections; in parallel, we evaluated its central behavioral effects. After an intraperitoneal injection of 10 mg/kg, the analgesic effect appeared after 5 min and persisted up to 4 h; brain absorption was rapid (t 30 min) and large (brain-to-plasma ratio 16), with active concentration >700 ng/g.
View Article and Find Full Text PDF-Methyl-4-methylaminorex (4,4'-DMAR) is a phenethylamine derivative with psychostimulant activity whose abuse has been associated with several deaths and a wide range of adverse effects. We recently validated a high-performance liquid chromatography-tandem mass spectrometry method to measure the compound's concentrations in plasma, and we applied it to describe the pharmacokinetic properties of 4,4'-DMAR after a single dose in rats. In this study, we investigated the brain disposition and metabolism of 4,4'-DMAR after intraperitoneal injection as well as its central behavioral effects.
View Article and Find Full Text PDF4,4'-DMAR is an analogue of the known psychostimulants 4-methylaminorex and aminorex. In the light of reports of deaths associated with its abuse, and the easy access from Internet vendors, the EU Council recently decided on control measures across member states. Here we describe a validated method for measuring plasma levels of cis-4,4'-DMAR, crucial for preclinical studies and analysis in human plasma.
View Article and Find Full Text PDFMany efforts have been performed in order to understand the role of recruited macrophages in the progression of spinal cord injury (SCI). Different studies revealed a pleiotropic effect played by these cells associated to distinct phenotypes (M1 and M2), showing a predictable spatial and temporal distribution in the injured site after SCI. Differently, the role of activated microglia in injury progression has been poorly investigated, mainly because of the challenges to target and selectively modulate them in situ.
View Article and Find Full Text PDFAims: Pulmonary arterial hypertension (PAH) reflects abnormal pulmonary vascular resistance and causes right ventricular (RV) hypertrophy. Enhancement of the late sodium current (INaL) may result from hypertrophic remodelling. The study tests whether: (i) constitutive INaL enhancement may occur as part of PAH-induced myocardial remodelling; (ii) ranolazine (RAN), a clinically available INaL blocker, may prevent constitutive INaL enhancement and PAH-induced myocardial remodelling.
View Article and Find Full Text PDFBackground: The kynurenine pathway (KP) is the major route of tryptophan (TRP) catabolism and is activated by inflammation and after cardiac arrest in animals. We hypothesized that the KP activation level correlates with severity of post-cardiac arrest shock, early death, and long-term outcome.
Methods And Results: Plasma was obtained from 245 patients enrolled in a prospective multicenter observational study in 21 intensive care units in Finland.
A new immunoassay based on surface plasmon resonance (SPR) for the rapid, reproducible and sensitive determination of pentraxin-3 (PTX3) levels in human plasma has been developed and characterized. The method involves a 3-min flow of plasma over a sensor chip pre-coated with a monoclonal anti-PTX3 antibody (MNB4), followed by a 3-min flow of a polyclonal anti-PTX3 antibody (pAb), required for specific recognition of captured PTX3. The SPR signal generated with this secondary antibody linearly correlates with the plasma PTX3 concentration, in the range of 5-1500 ng/mL, with a lowest limit of detection of 5 ng/mL.
View Article and Find Full Text PDFMuch evidence shows that acute and chronic inflammation in spinal cord injury (SCI), characterized by immune cell infiltration and release of inflammatory mediators, is implicated in development of the secondary injury phase that occurs after spinal cord trauma and in the worsening of damage. Activation of microglia/macrophages and the associated inflammatory response appears to be a self-propelling mechanism that leads to progressive neurodegeneration and development of persisting pain state. Recent advances in polymer science have provided a huge amount of innovations leading to increased interest for polymeric nanoparticles (NPs) as drug delivery tools to treat SCI.
View Article and Find Full Text PDFOxidative stress and mitochondrial impairment are the main pathogenic mechanisms of Amyotrophic Lateral Sclerosis (ALS), a severe neurodegenerative disease still lacking of effective therapy. Recently, the coenzyme-Q (CoQ) complex, a key component of mitochondrial function and redox-state modulator, has raised interest for ALS treatment. However, while the oxidized form ubiquinone10 was ineffective in ALS patients and modestly effective in mouse models of ALS, no evidence was reported on the effect of the reduced form ubiquinol10, which has better bioavailability and antioxidant properties.
View Article and Find Full Text PDFAbstract Doxycycline inhibits amyloid formation in vitro and its therapeutic efficacy is under evaluation in clinical trials for different protein conformational diseases, including prion diseases, Alzheimer's disease and transthyretin amyloidosis. In patients on chronic hemodialysis, a persistently high concentration of β2-microglobulin causes a form of amyloidosis (dialysis-related amyloidosis, DRA) localized in bones and ligaments. Since doxycycline inhibits β2-microglobulin fibrillogenesis in vitro and accumulates in bones, DRA represents an ideal form of amyloidosis where doxycycline may reach a therapeutic concentration at the site of amyloid deposition.
View Article and Find Full Text PDFGreat interest is currently being devoted to the development of nanoparticles (NPs) for biomedical purposes, designed to improve the pharmacokinetic profile of their cargos (either imaging probes or drugs) and to enhance the specific targeting at the disease site. Recent works suggest that Surface Plasmon Resonance (SPR), widely used for the analysis of biomolecular interactions, represents a technique of choice for rapid and quantitative analyses of the interaction between NPs--functionalized with specific ligands--and their putative biological targets. Moreover, SPR can provide important details on the formation and the role of the protein "corona", i.
View Article and Find Full Text PDF