Secretory IgA (SIgA) is the most abundant antibody type in intestinal secretions where it contributes to safeguarding the epithelium from invasive pathogens like the Gram-negative bacterium, Salmonella enterica serovar Typhimurium (STm). For example, we recently reported that passive oral administration of the recombinant monoclonal SIgA antibody, Sal4, to mice promotes STm agglutination in the intestinal lumen and restricts bacterial invasion of Peyer's patch tissues. In this report, we sought to recapitulate Sal4-mediated protection against STm in human Enteroids and human intestinal organoids (HIOs) as models to decipher the molecular mechanisms by which antibodies function in mucosal immunity in the human gastrointestinal tract.
View Article and Find Full Text PDFSARS-CoV-2 infection-which involves both cell attachment and membrane fusion-relies on the angiotensin-converting enzyme 2 (ACE2) receptor, which is paradoxically found at low levels in the respiratory tract, suggesting that there may be additional mechanisms facilitating infection. Here we show that C-type lectin receptors, DC-SIGN, L-SIGN and the sialic acid-binding immunoglobulin-like lectin 1 (SIGLEC1) function as attachment receptors by enhancing ACE2-mediated infection and modulating the neutralizing activity of different classes of spike-specific antibodies. Antibodies to the amino-terminal domain or to the conserved site at the base of the receptor-binding domain, while poorly neutralizing infection of ACE2-overexpressing cells, effectively block lectin-facilitated infection.
View Article and Find Full Text PDFThe spillovers of betacoronaviruses in humans and the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants highlight the need for broad coronavirus countermeasures. We describe five monoclonal antibodies (mAbs) cross-reacting with the stem helix of multiple betacoronavirus spike glycoproteins isolated from COVID-19 convalescent individuals. Using structural and functional studies, we show that the mAb with the greatest breadth (S2P6) neutralizes pseudotyped viruses from three different subgenera through the inhibition of membrane fusion, and we delineate the molecular basis for its cross-reactivity.
View Article and Find Full Text PDFThe recent emergence of SARS-CoV-2 variants of concern and the recurrent spillovers of coronaviruses into the human population highlight the need for broadly neutralizing antibodies that are not affected by the ongoing antigenic drift and that can prevent or treat future zoonotic infections. Here we describe a human monoclonal antibody designated S2X259, which recognizes a highly conserved cryptic epitope of the receptor-binding domain and cross-reacts with spikes from all clades of sarbecovirus. S2X259 broadly neutralizes spike-mediated cell entry of SARS-CoV-2, including variants of concern (B.
View Article and Find Full Text PDFAn ideal therapeutic anti-SARS-CoV-2 antibody would resist viral escape, have activity against diverse sarbecoviruses, and be highly protective through viral neutralization and effector functions. Understanding how these properties relate to each other and vary across epitopes would aid the development of therapeutic antibodies and guide vaccine design. Here we comprehensively characterize escape, breadth and potency across a panel of SARS-CoV-2 antibodies targeting the receptor-binding domain (RBD).
View Article and Find Full Text PDFBackground: Hospital healthcare workers (HCW), in particular those involved in the clinical care of COVID-19 cases, are presumably exposed to a higher risk of acquiring the disease than the general population.
Methods: Between April 16 and 30, 2020 we conducted a prospective, SARS-CoV-2 seroprevalence study in HCWs in Southern Switzerland. Participants were hospital personnel with varying COVID-19 exposure risk depending on job function and working site.
The recent emergence of SARS-CoV-2 variants of concern (VOC) and the recurrent spillovers of coronaviruses in the human population highlight the need for broadly neutralizing antibodies that are not affected by the ongoing antigenic drift and that can prevent or treat future zoonotic infections. Here, we describe a human monoclonal antibody (mAb), designated S2X259, recognizing a highly conserved cryptic receptor-binding domain (RBD) epitope and cross-reacting with spikes from all sarbecovirus clades. S2X259 broadly neutralizes spike-mediated entry of SARS-CoV-2 including the B.
View Article and Find Full Text PDFAn ideal anti-SARS-CoV-2 antibody would resist viral escape , have activity against diverse SARS-related coronaviruses , and be highly protective through viral neutralization and effector functions . Understanding how these properties relate to each other and vary across epitopes would aid development of antibody therapeutics and guide vaccine design. Here, we comprehensively characterize escape, breadth, and potency across a panel of SARS-CoV-2 antibodies targeting the receptor-binding domain (RBD), including S309 , the parental antibody of the late-stage clinical antibody VIR-7831.
View Article and Find Full Text PDFSARS-CoV-2 entry is mediated by the spike (S) glycoprotein which contains the receptor-binding domain (RBD) and the N-terminal domain (NTD) as the two main targets of neutralizing antibodies (Abs). A novel variant of concern (VOC) named CAL.20C (B.
View Article and Find Full Text PDFAs the predominant antibody type in mucosal secretions, human colostrum, and breast milk, secretory IgA (SIgA) plays a central role in safeguarding the intestinal epithelium of newborns from invasive enteric pathogens like the Gram-negative bacterium serovar Typhimurium (STm). SIgA is a complex molecule, consisting of an assemblage of two or more IgA monomers, joining (J)-chain, and secretory component (SC), whose exact functions in neutralizing pathogens are only beginning to be elucidated. In this study, we produced and characterized a recombinant human SIgA variant of Sal4, a well-characterized monoclonal antibody (mAb) specific for the O5-antigen of STm lipopolysaccharide (LPS).
View Article and Find Full Text PDFTransmission of SARS-CoV-2 is uncontrolled in many parts of the world; control is compounded in some areas by the higher transmission potential of the B.1.1.
View Article and Find Full Text PDFSARS-CoV-2 can mutate and evade immunity, with consequences for efficacy of emerging vaccines and antibody therapeutics. Here, we demonstrate that the immunodominant SARS-CoV-2 spike (S) receptor binding motif (RBM) is a highly variable region of S and provide epidemiological, clinical, and molecular characterization of a prevalent, sentinel RBM mutation, N439K. We demonstrate N439K S protein has enhanced binding affinity to the hACE2 receptor, and N439K viruses have similar in vitro replication fitness and cause infections with similar clinical outcomes as compared to wild type.
View Article and Find Full Text PDFSevere Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) transmission is uncontrolled in many parts of the world, compounded in some areas by higher transmission potential of the B1.1.7 variant now seen in 50 countries.
View Article and Find Full Text PDFAnalysis of the specificity and kinetics of neutralizing antibodies (nAbs) elicited by SARS-CoV-2 infection is crucial for understanding immune protection and identifying targets for vaccine design. In a cohort of 647 SARS-CoV-2-infected subjects, we found that both the magnitude of Ab responses to SARS-CoV-2 spike (S) and nucleoprotein and nAb titers correlate with clinical scores. The receptor-binding domain (RBD) is immunodominant and the target of 90% of the neutralizing activity present in SARS-CoV-2 immune sera.
View Article and Find Full Text PDFEfficient therapeutic options are needed to control the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that has caused more than 922,000 fatalities as of 13 September 2020. We report the isolation and characterization of two ultrapotent SARS-CoV-2 human neutralizing antibodies (S2E12 and S2M11) that protect hamsters against SARS-CoV-2 challenge. Cryo-electron microscopy structures show that S2E12 and S2M11 competitively block angiotensin-converting enzyme 2 (ACE2) attachment and that S2M11 also locks the spike in a closed conformation by recognition of a quaternary epitope spanning two adjacent receptor-binding domains.
View Article and Find Full Text PDFinfection is one of the most common causes of bacterial gastroenteritis worldwide and a major global health threat due to the rapid development of antibiotic resistance. Currently, there are no vaccines approved to prevent campylobacteriosis, and rehydration is the main form of therapy. Secretory immunoglobulin A (SIgA) is the main antibody class found in mucous secretions, including human milk, and serves as the first line of defense for the gastrointestinal epithelium against enteric pathogens.
View Article and Find Full Text PDFSARS-CoV-2 is a newly emerged coronavirus responsible for the current COVID-19 pandemic that has resulted in more than one million infections and 73,000 deaths . Vaccine and therapeutic discovery efforts are paramount to curb the pandemic spread of this zoonotic virus. The SARS-CoV-2 spike (S) glycoprotein promotes entry into host cells and is the main target of neutralizing antibodies.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a newly emerged coronavirus that is responsible for the current pandemic of coronavirus disease 2019 (COVID-19), which has resulted in more than 3.7 million infections and 260,000 deaths as of 6 May 2020. Vaccine and therapeutic discovery efforts are paramount to curb the pandemic spread of this zoonotic virus.
View Article and Find Full Text PDFZika virus (ZIKV), a mosquito-borne flavivirus, causes devastating congenital birth defects. We isolated a human monoclonal antibody (mAb), ZKA190, that potently cross-neutralizes multi-lineage ZIKV strains. ZKA190 is highly effective in vivo in preventing morbidity and mortality of ZIKV-infected mice.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2017
Zika virus (ZIKV) is a mosquito-borne flavivirus that emerged recently as a global health threat, causing a pandemic in the Americas. ZIKV infection mostly causes mild disease, but is linked to devastating congenital birth defects and Guillain-Barré syndrome in adults. The high level of cross-reactivity among flaviviruses and their cocirculation has complicated serological approaches to differentially detect ZIKV and dengue virus (DENV) infections, accentuating the urgent need for a specific and sensitive serological test.
View Article and Find Full Text PDFZika virus (ZIKV), a mosquito-borne flavivirus with homology to Dengue virus (DENV), has become a public health emergency. By characterizing memory lymphocytes from ZIKV-infected patients, we dissected ZIKV-specific and DENV-cross-reactive immune responses. Antibodies to nonstructural protein 1 (NS1) were largely ZIKV-specific and were used to develop a serological diagnostic tool.
View Article and Find Full Text PDFWe examined the potential expression and function of alpha7 nicotinic acetylcholine receptors (nAChRs) in leukocytes. RT-PCR with alpha7 specific primers revealed the presence of the receptor mRNA in leukocytes. Immunoblotting and immunofluorescence experiments demonstrated the expression of a protein that is recognized by alpha7 specific antibodies.
View Article and Find Full Text PDF