Publications by authors named "Jacobs-Helber S"

Background: Highly multiplexed assays for quantitation of RNA transcripts are being used in many areas of biology and medicine. Using data generated by these transcriptomic assays requires measurement assurance with appropriate controls. Methods to prototype and evaluate multiple RNA controls were developed as part of the External RNA Controls Consortium (ERCC) assessment process.

View Article and Find Full Text PDF

Primary erythroid cells and erythroid cell lines may synthesize and secrete tumor necrosis factor-alpha (TNF-alpha) following stimulation with erythropoietin (EPO). The effect of triggering TNF-alpha synthesis and secretion was investigated in erythroleukemia and myeloid cell lines: HCD57, DA3-EPOR, and BAF3-EPOR. The EPO-induced, membrane-bound form of autocrine TNF-alpha seemed to enhance proliferation of HCD57 and DA3-EPOR cells; however, the concentration of secreted autocrine/paracrine TNF-alpha was never sufficient to have an effect.

View Article and Find Full Text PDF

Erythropoietin (EPO) is the hormone necessary for development of erythrocytes from immature erythroid cells. EPO activates Jun N-terminal kinase (JNK), a member of the mitogen-activated protein kinase (MAPK) family in the EPO-dependent murine erythroid HCD57 cells. Therefore, we tested if JNK activity supported proliferation and/or survival of these cells.

View Article and Find Full Text PDF

Interleukin-3 (IL-3) and stem cell factor (SCF) are important mast cell growth and differentiation factors. Since both cytokines activate the transcription factor signal transducer and activator of transcription 5 (Stat5), a known regulator of proliferation and survival, we investigated the effects of Stat5 deficiency on mast cell development and survival. Bone marrow-derived mast cell (BMMC) populations cultured from Stat5A/B-deficient mice survived in IL-3 + SCF, but not in either cytokine alone.

View Article and Find Full Text PDF

Binding of erythropoietin (EPO) to its receptor (EPOR) on erythroid cells induces the activation of numerous signal transduction pathways, including the mitogen-activated protein kinase Jun-N-terminal kinase (JNK). In an effort to understand the regulation of EPO-induced proliferation and JNK activation, we have examined the role of potential autocrine factors in the proliferation of the murine erythroleukemia cell line HCD57. We report here that treatment of these cells with EPO induced the expression and secretion of tumor necrosis factor alpha (TNF-alpha).

View Article and Find Full Text PDF

The role of junB as a regulator of erythroid cell survival, proliferation, and differentiation was tested by controlled expression of JunB in the erythropoietin (EPO)-dependent erythroleukemia cell line HCD57. JunB induced erythroid differentiation as evidenced by increased expression of the erythroid-specific proteins beta-globin, spectrin-alpha, and TER-119. Expression of JunB for at least 48 h was required for the differentiated phenotype to emerge.

View Article and Find Full Text PDF

Mast cells are found in connective and mucosal tissues throughout the body. Their activation via immunoglobulin E (IgE)-antigen interactions is promoted by T helper cell type 2 (Th2) cytokines and leads to the sequelae of allergic disease. We now report a mechanism by which Th2 cytokines can regulate mast cell survival.

View Article and Find Full Text PDF

Erythropoietin (EPO) allows erythroid precursors to proliferate while protecting them from apoptosis. Treatment of the EPO-dependent HCD57 murine cell line with 70 micromol/L orthovanadate, a tyrosine phosphatase inhibitor, resulted in both increased tyrosine protein phosphorylation and prevention of apoptosis in the absence of EPO without promoting proliferation. Orthovanadate also delayed apoptosis in primary human erythroid progenitors.

View Article and Find Full Text PDF

Jun N-terminal kinase (JNK) and p38, members of the mitogen-activated protein kinase family of serine/threonine kinases, are activated as a result of cellular stress but may also play a role in growth factor-induced proliferation and/or survival or differentiation of many cells. A recent report has implicated JNK and p38 in the induction of apoptosis in the erythropoietin (EPO)-dependent erythroid cell line HCD57 following EPO withdrawal, whereas our previously reported data did not support a role for JNK in growth factor withdrawal-induced apoptosis in HCD57 cells. Therefore, further testing was done to see if JNK was activated in EPO withdrawal-induced apoptosis; the study was extended to p38 and characterized the effect of EPO on JNK and p38 activities.

View Article and Find Full Text PDF

This review summarizes selected recent studies of the intracellular signals that allow erythroid cells to survive and proliferate under the control of erythropoietin (EPO) and alteration in signals that contribute to EPO-independent survival and proliferation. The hypothesis explored is that the proliferation and survival signals are distinct and can be separately studied with the proper cell lines and growth factor stimulation. The anti- and pro-apoptotic proteins Bcl-XL and BAD are highly implicated in EPO-dependent survival of erythroid cells.

View Article and Find Full Text PDF

We found that erythropoietin (EPO) and stem cell factor (SCF) activated protein kinase B (PKB/Akt) in EPO-dependent HCD57 erythroid cells. To better understand signals controlling proliferation and viability, erythroid cells that resist apoptosis in the absence of EPO were subcloned and characterized (HCD57-SREI cells). Constitutive activations of PKB/Akt, STAT5a, and STAT5b were noted in these EPO-independent cells.

View Article and Find Full Text PDF

STAT6, NF-kappaB (p50) and C/EBPbeta transcription factors (TF) were examined with respect to CD23 regulation. Electrophoretic mobility shift assay (EMSA), competition and supershift analysis demonstrated that STAT6 binds the CD23a promoter but with a lower affinity than the consensus site. STAT6-/- mice were analyzed for CD23 levels and showed reduced expression after CD40 ligand trimer (CD40LT) stimulation.

View Article and Find Full Text PDF

The transcription factor AP1 has been implicated in the induction of apoptosis in cells in response to stress factors and growth factor withdrawal. We report here that AP1 is necessary for the induction of apoptosis following hormone withdrawal in the erythropoietin (EPO)-dependent erythroid cell line HCD57. AP1 DNA binding activity increased upon withdrawal of HCD57 cells from EPO.

View Article and Find Full Text PDF