Publications by authors named "Jacobo Ruiz de Elvira"

Puzzles in the determination of the hadronic-vacuum-polarization contribution currently impede a conclusive interpretation of the precision measurement of the anomalous magnetic moment of the muon at the Fermilab experiment. One such puzzle concerns tensions between evaluations in lattice QCD and using e^{+}e^{-}→hadrons cross-section data. In lattice QCD, the dominant isospin-symmetric part and isospin-breaking (IB) corrections are calculated separately, with very different systematic effects.

View Article and Find Full Text PDF

Analyzing the pion mass dependence of ππ scattering phase shifts beyond the low-energy region requires the unitarization of the amplitudes from chiral perturbation theory. In the two-flavor theory, unitarization via the inverse-amplitude method (IAM) can be justified from dispersion relations, which is therefore expected to provide reliable predictions for the pion mass dependence of results from lattice QCD calculations. In this work, we provide compact analytic expression for the two-loop partial-wave amplitudes for J=0, 1, 2 required for the IAM at subleading order.

View Article and Find Full Text PDF

If physics beyond the standard model enters well above the electroweak scale, its low-energy effects are described by standard model effective field theory. Already, at dimension 6, many operators involve the antisymmetric quark tensor q[over ¯]σ^{μν}q, whose matrix elements are difficult to constrain from experiment, Ward identities, or low-energy theorems, in contrast to the corresponding vector and axial-vector or even scalar and pseudoscalar currents. However, with normalizations determined from lattice QCD, analyticity and unitarity often allow one to predict the momentum dependence in a large kinematic range.

View Article and Find Full Text PDF

We match the results for the subthreshold parameters of pion-nucleon scattering obtained from a solution of Roy-Steiner equations to chiral perturbation theory up to next-to-next-to-next-to-leading order, to extract the pertinent low-energy constants including a comprehensive analysis of systematic uncertainties and correlations. We study the convergence of the chiral series by investigating the chiral expansion of threshold parameters up to the same order and discuss the role of the Δ(1232) resonance in this context. Results for the low-energy constants are also presented in the counting scheme usually applied in chiral nuclear effective field theory, where they serve as crucial input to determine the long-range part of the nucleon-nucleon potential as well as three-nucleon forces.

View Article and Find Full Text PDF

We present a determination of the pion-nucleon (πN) σ term σ_{πN} based on the Cheng-Dashen low-energy theorem (LET), taking advantage of the recent high-precision data from pionic atoms to pin down the πN scattering lengths as well as of constraints from analyticity, unitarity, and crossing symmetry in the form of Roy-Steiner equations to perform the extrapolation to the Cheng-Dashen point in a reliable manner. With isospin-violating corrections included both in the scattering lengths and the LET, we obtain σ_{πN}=(59.1±1.

View Article and Find Full Text PDF