The advanced optical and wetting properties of metamaterials, plasmonic structures, and nanostructured surfaces have been repeatedly demonstrated in lab-scale experiments. Extending these exciting discoveries to large-area surfaces can transform technologies ranging from solar energy and virtual reality to biosensors and anti-microbial surfaces. Although photolithography is ideal for nanopatterning of small, expensive items such as computer chips, nanopatterning of large-area surfaces is virtually impossible with traditional lithographic techniques due to their exceptionally slow patterning rates and high costs.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
December 2015
The deposition of Ni nanoparticles into porous supports is very important in catalysis. In this paper, we explore the use of supercritical CO(2) (scCO(2)) as a green solvent to deposit Ni nanoparticles on mesoporous SiO2 SBA-15 and a carbon xerogel. The good transport properties of scCO(2) allowed the efficient penetration of metal precursors dissolved in scCO(2) within the pores of the support without damaging its structure.
View Article and Find Full Text PDF