Short dysfunctional telomeres are capable of fusion, generating dicentric chromosomes and initiating breakage-fusion-bridge cycles. Cells that escape the ensuing cellular crisis exhibit large-scale genomic rearrangements that drive clonal evolution and malignant progression. We demonstrate that there is an absolute requirement for fully functional DNA ligase III (LIG3), but not ligase IV (LIG4), to facilitate the escape from a telomere-driven crisis.
View Article and Find Full Text PDFKu-dependent C-NHEJ (classic non-homologous end joining) is the primary DNA EJing (end joining) repair pathway in mammals. Recently, an additional EJing repair pathway (A-NHEJ; alternative-NHEJ) has been described. Currently, the mechanism of A-NHEJ is obscure although a dependency on LIGIII (DNA ligase III) is often implicated.
View Article and Find Full Text PDFClassic non-homologous end joining (C-NHEJ) is the predominant DNA double-strand break repair pathway in humans. Although seven genes Ku70, Ku86, DNA-PK(cs), Artemis, DNA Ligase IV (LIGIV), X-ray cross-complementing group 4 and XRCC4-like factor are required for C-NHEJ, several of them also have ancillary functions. For example, Ku70:Ku86 possesses an essential telomere maintenance activity.
View Article and Find Full Text PDF