Publications by authors named "Jacob Z"

Carbon nanotube filaments with a twisted geometry emit spinning heat waves at high temperatures.

View Article and Find Full Text PDF

Background: Kidney failure at any age has a significant impact on quality of life (QoL) but the overall symptom burden for children and young people (CYP) is poorly described. Kidney failure has no cure and whilst transplantation is the preferred management option, it is not always possible, with patients requiring supportive care at the end of their lives.

Aim: To use the literature to understand the symptom burden for CYP with kidney failure who are approaching end-of-life.

View Article and Find Full Text PDF

Dimensionality plays a crucial role in long-range dipole-dipole interactions (DDIs). We demonstrate that a resonant nanophotonic structure modifies the apparent dimensionality in an interacting ensemble of emitters, as revealed by population decay dynamics. Our measurements on a dense ensemble of interacting quantum emitters in a resonant nanophotonic structure with long-range DDIs reveal an effective dimensionality reduction to d[over ¯]=2.

View Article and Find Full Text PDF

The resolution of optical imaging is limited by diffraction as well as detector noise. However, thermal imaging exhibits an additional unique phenomenon of ghosting which results in blurry and low-texture images. Here, we provide a detailed view of thermal physics-driven texture and explain why it vanishes in thermal images capturing heat radiation.

View Article and Find Full Text PDF

Anisotropic planar polaritons - hybrid electromagnetic modes mediated by phonons, plasmons, or excitons - in biaxial two-dimensional (2D) van der Waals crystals have attracted significant attention due to their fundamental physics and potential nanophotonic applications. In this Perspective, we review the properties of planar hyperbolic polaritons and the variety of methods that can be used to experimentally tune them. We argue that such natural, planar hyperbolic media should be fairly common in biaxial and uniaxial 2D and 1D van der Waals crystals, and identify the untapped opportunities they could enable for functional (i.

View Article and Find Full Text PDF

The engineering of the spatial and temporal properties of both the electric permittivity and the refractive index of materials is at the core of photonics. When vanishing to zero, those two variables provide efficient knobs to control light-matter interactions. This Perspective aims at providing an overview of the state of the art and the challenges in emerging research areas where the use of near-zero refractive index and hyperbolic metamaterials is pivotal, in particular, light and thermal emission, nonlinear optics, sensing applications, and time-varying photonics.

View Article and Find Full Text PDF

All-optical switches control the amplitude, phase, and polarization of light using optical control pulses. They can operate at ultrafast timescales - essential for technology-driven applications like optical computing, and fundamental studies like time-reflection. Conventional all-optical switches have a fixed switching time, but this work demonstrates that the response-time can be controlled by selectively controlling the light-matter-interaction in so-called fast and slow materials.

View Article and Find Full Text PDF

Machine perception uses advanced sensors to collect information about the surrounding scene for situational awareness. State-of-the-art machine perception using active sonar, radar and LiDAR to enhance camera vision faces difficulties when the number of intelligent agents scales up. Exploiting omnipresent heat signal could be a new frontier for scalable perception.

View Article and Find Full Text PDF

Spinning thermal radiation is a unique phenomenon observed in condensed astronomical objects, including the Wolf-Rayet star EZ-CMa and the red degenerate star G99-47, due to the existence of strong magnetic fields. Here, by designing symmetry-broken metasurfaces, we demonstrate that spinning thermal radiation with a nonvanishing optical helicity can be realized even without applying a magnetic field. We design nonvanishing optical helicity by engineering a dispersionless band that emits omnidirectional spinning thermal radiation, where our design reaches 39% of the fundamental limit.

View Article and Find Full Text PDF

Engineering symmetries in nanostructures and metasurfaces provides a new paradigm to control incoherent heat radiation for applications in energy conversion, thermal sources, infrared imaging, and radiative cooling.

View Article and Find Full Text PDF

We discover the quantum analog of the well-known classical maximum power transfer theorem. Our theoretical framework considers the continuous steady-state problem of coherent energy transfer through an N-node bosonic network coupled to an external dissipative load. We present an exact solution for optimal power transfer in the form of the maximum power transfer theorem known in the design of electrical circuits.

View Article and Find Full Text PDF

A remarkable prediction of quantum field theory is that there are quantum electromagnetic fluctuations (virtual photons) everywhere, which leads to the intriguing Casimir effect. While the Casimir force between two objects has been studied extensively for several decades, the Casimir force between three objects has not been measured yet. Here, we report the experimental demonstration of an object under the Casimir force exerted by two other objects simultaneously.

View Article and Find Full Text PDF

We derive a unified quantum theory of coherent and incoherent energy transfer between two atoms (donor and acceptor) valid in arbitrary Markovian nanophotonic environments. Our theory predicts a fundamental bound = + for energy transfer efficiency arising from the spontaneous emission rates γ and γ of the donor and acceptor. We propose the control of the acceptor spontaneous emission rate as a new design principle for enhancing energy transfer efficiency.

View Article and Find Full Text PDF

Generation of a local magnetic field at the nanoscale is desirable for many applications such as spin-qubit-based quantum memories. However, this is a challenge due to the slow decay of static magnetic fields. Here, we demonstrate a photonic spin density (PSD)-induced effective static magnetic field for an ensemble of nitrogen-vacancy (NV) centers in bulk diamond.

View Article and Find Full Text PDF

Germanium is typically used for solid-state electronics, fiber-optics, and infrared applications, due to its semiconducting behavior at optical and infrared wavelengths. In contrast, here we show that the germanium displays metallic nature and supports propagating surface plasmons in the deep ultraviolet (DUV) wavelengths, that is typically not possible to achieve with conventional plasmonic metals such as gold, silver, and aluminum. We measure the photonic band spectrum and distinguish the plasmonic excitation modes: bulk plasmons, surface plasmons, and Cherenkov radiation using a momentum-resolved electron energy loss spectroscopy.

View Article and Find Full Text PDF

Monogenic causes of paediatric nephrocalcinosis are associated with extensive phenotypic variability. We report a 14-year-old male who presented at 8 years of age with incidentally identified nephrocalcinosis alongside growth impairment and dental anomalies. Extensive genetic investigation confirmed a molecular diagnosis of Bartter syndrome type II.

View Article and Find Full Text PDF

One of the fundamental predictions of quantum mechanics is the occurrence of random fluctuations in a vacuum caused by the zero-point energy. Remarkably, quantum electromagnetic fluctuations can induce a measurable force between neutral objects, known as the Casimir effect, and it has been studied both theoretically and experimentally. The Casimir effect can dominate the interaction between microstructures at small separations and is essential for micro- and nanotechnologies.

View Article and Find Full Text PDF

Spontaneous emission of quantum emitters can be enhanced by increasing the local density of optical states, whereas engineering dipole-dipole interactions requires modifying the two-point spectral density function. Here, we experimentally demonstrate long-range dipole-dipole interactions (DDIs) mediated by surface lattice resonances in a plasmonic nanoparticle lattice. Using angle-resolved spectral measurements and fluorescence lifetime studies, we show that unique nanophotonic modes mediate long-range DDI between donor and acceptor molecules.

View Article and Find Full Text PDF

Over the past three decades, graphene has become the prototypical platform for discovering topological phases of matter. Both the Chern [Formula: see text] and quantum spin Hall [Formula: see text] insulators were first predicted in graphene, which led to a veritable explosion of research in topological materials. We introduce a new topological classification of two-dimensional matter - the optical N-phases [Formula: see text].

View Article and Find Full Text PDF

Spin-momentum locking is a universal wave phenomenon promising for applications in electronics and photonics. In acoustics, Lord Rayleigh showed that surface acoustic waves exhibit a characteristic elliptical particle motion strikingly similar to spin-momentum locking. Although these waves have become one of the few phononic technologies of industrial relevance, the observation of their transverse spin remained an open challenge.

View Article and Find Full Text PDF

Imaging point sources with low angular separation near or below the Rayleigh criterion are important in astronomy, e.g., in the search for habitable exoplanets near stars.

View Article and Find Full Text PDF

Over the past decade, topology has emerged as a major branch in broad areas of physics, from atomic lattices to condensed matter. In particular, topology has received significant attention in photonics because light waves can serve as a platform to investigate nontrivial bulk and edge physics with the aid of carefully engineered photonic crystals and metamaterials. Simultaneously, photonics provides enriched physics that arises from spin-1 vectorial electromagnetic fields.

View Article and Find Full Text PDF

Nearly all thermal radiation phenomena involving materials with linear response can be accurately described via semi-classical theories of light. Here, we go beyond these traditional paradigms to study a nonlinear system that, as we show, requires quantum theory of damping. Specifically, we analyze thermal radiation from a resonant system containing a χ nonlinear medium and supporting resonances at frequencies ω and ω ≈ 2ω, where both resonators are driven only by intrinsic thermal fluctuations.

View Article and Find Full Text PDF

High-temperature thermal photonics presents unique challenges for engineers as the database of materials that can withstand extreme environments are limited. In particular, ceramics with high temperature stability that can support coupled light-matter excitations, that is, polaritons, open new avenues for engineering radiative heat transfer. Hexagonal boron nitride (hBN) is an emerging ceramic 2D material that possesses low-loss polaritons in two spectrally distinct mid-infrared frequency bands.

View Article and Find Full Text PDF

End-tidal CO (Et) is the standard in operative care along with pulse oximetry for ventilation assessment. It is known to be less accurate in the infant population than in adults. Many neonatal intensive care units (NICU) have converted to utilizing transcutaneous CO (tcP) monitoring.

View Article and Find Full Text PDF