We employ analytical transmission electron microscopy (TEM) to correlate the structural and chemical environment variations within a stacked epitaxial thin film of the high entropy oxide (HEO) MgCoNiCuZnO (J14), with two layers grown at different substrate temperatures (500 and 200 °C) using pulsed laser deposition (PLD). Electron diffraction and atomically resolved STEM imaging reveal the difference in out-of-plane lattice parameters in the stacked thin film, which is further quantified on a larger scale using four-dimensional STEM (4D-STEM). In the layer deposited at a lower temperature, electron energy loss spectroscopy (EELS) mapping indicates drastic changes in the oxidation states and bonding environment for Co ions, and energy-dispersive X-ray spectroscopy (EDX) mapping detects more significant cation deficiency.
View Article and Find Full Text PDFWe describe the synthesis of Xyzidepsin, a depsipeptidic analogue of HDAC inhibitor Romidepsin (FK228), using a solid-phase strategy. Our latent thioester solid-phase linker was synthesized in 92% yield (three steps). Chemoselective conditions unmasked the thioester functionality and cyclized the depsipeptidic macrocycle.
View Article and Find Full Text PDF