The ability to controllably move gaseous ions is an essential aspect of ion-based spectrometry (, mass spectrometry and ion mobility spectrometry) as well as materials processing. At higher pressures, ion motion is largely governed by diffusion and multiple collisions with neutral gas molecules. Thus, high-pressure ion optics based on electrostatics require large fields, radio frequency drives, complicated geometries, and/or partially transmissive grids that become contaminated.
View Article and Find Full Text PDFThe low-temperature plasma (LTP) probe is a common plasma-based source used for ambient desorption-ionization mass spectrometry (MS). While the LTP probe has been characterized in detail with MS, relatively few studies have used optical spectroscopy. In this paper, two-dimensional (2D) imaging at selected wavelengths is used to visualize important species in the LTP plasma jet.
View Article and Find Full Text PDFConcomitant species that appear at the same or very similar times in a mass-spectral analysis can clutter a spectrum because of the coexistence of many analyte-related ions (.., molecular ions, adducts, fragments).
View Article and Find Full Text PDFAlthough allosteric binding of small molecules is commonplace in protein structures, it is rather rare in DNA species such as G-quadruplexes. By using CD melting, here, we found binding of the small-molecule ligands PDS and L2H2-6OTD to the telomeric DNA G-quadruplex was cooperative. Mass spectrometry indicated a 1:1:1 ratio in the ternary binding complex of the telomeric G-quadruplex, PDS, and L2H2-6OTD.
View Article and Find Full Text PDFMass Spectrom Rev
September 2021
Since the first mass spectrometry (MS) experiments were conducted by Thomson and Aston, plasmas have been used as ionization sources. Historically, plasma ion sources were used for these experiments because they were one of the few known sources of gas-phase ions at the time and they were relatively simple to setup and operate. Since then, developments in plasma ionization have continued to inform and motivate advances in other areas of MS.
View Article and Find Full Text PDFLiquid-crystal displays (LCDs) are the most frequently used display technology worldwide these days. Due to the rather complex manufacturing process and purity requirements for the chemicals used, quality control and display failure analysis are important analytical tasks. Currently, the state-of-the-art techniques (e.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
September 2019
Ambient mass spectrometry is a powerful approach for rapid, high-throughput, and direct sample analysis. Due to the open-air desorption and ionization processes, random fluctuations of ambient conditions can lead to large variances in mass-spectral signals over time. The mass-spectral data also can be further complicated due to multiple analytes present in the sample, background-ion signals stemming from the desorption/ionization source itself, and other laboratory-specific conditions (e.
View Article and Find Full Text PDFIn this article, some recent trends and developments in ambient desorption/ionization mass spectrometry (ADI-MS) are reviewed, with a special focus on quantitative analyses with direct, open-air sampling. Accurate quantification with ADI-MS is still not routinely performed, but this aspect is considered of utmost importance for the advancement of the field. In fact, several research groups are devoted to the development of novel and optimized ADI-MS approaches.
View Article and Find Full Text PDFWe present a novel design to use metal-organic cages (MOCs) to encapsulate Pt-based anticancer agents for delivery. A fluorescein-conjugated Pt(iv) prodrug of cisplatin is developed for its encapsulation in a cationic MOC via host-guest interactions, which then forms drug-loaded nanoparticles with an anionic polymer.
View Article and Find Full Text PDFModern "-omics" (, proteomics, glycomics, metabolomics, ) analyses rely heavily on electrospray ionization and tandem mass spectrometry to determine the structural identity of target species. Unfortunately, these methods are limited to specialized mass spectrometry instrumentation. Here, a novel approach is described that enables ionization and controlled, tunable fragmentation of peptides at atmospheric pressure.
View Article and Find Full Text PDFThe effects of oxygen addition on a helium-based flowing atmospheric pressure afterglow (FAPA) ionization source are explored. Small amounts of oxygen doped into the helium discharge gas resulted in an increase in abundance of protonated water clusters by at least three times. A corresponding increase in protonated analyte signal was also observed for small polar analytes, such as methanol and acetone.
View Article and Find Full Text PDFAn atmospheric-pressure solution-cathode glow discharge (SCGD) has been evaluated as an ion source for atomic, molecular, and ambient desorption/ionization mass spectrometry. The SCGD consists of a direct-current plasma, supported in the ambient air in the absence of gas flows, and sustained upon the surface of a flowing liquid cathode. Analytes introduced in the flowing liquid, as an ambient gas, or as a solid held near the plasma are vaporized and ionized by interactions within or near the discharge.
View Article and Find Full Text PDFKinetic and mechanistic studies on the reaction of a major intracellular vitamin B form, cob(II)alamin (Cbl(II)), with hypochlorous acid/hypochlorite (HOCl/OCl) have been carried out. Cbl(II) (Co(II)) is rapidly oxidized by HOCl to predominately aquacobalamin/hydroxycobalamin (Cbl(III), Co(III)) with a second-order rate constant of 2.4×10Ms (25.
View Article and Find Full Text PDFPlasma-based ambient desorption/ionization sources are versatile in that they enable direct ionization of gaseous samples as well as desorption/ionization of analytes from liquid and solid samples. However, ionization matrix effects, caused by competitive ionization processes, can worsen sensitivity or even inhibit detection all together. The present study is focused on expanding the analytical capabilities of the flowing atmospheric-pressure afterglow (FAPA) source by exploring additional types of ionization chemistry.
View Article and Find Full Text PDFReactions between 2,6-diformyl-4-alkyl(R)-phenol (R = CH3 or C(CH3)3) and 1,3-diamino-2-hydroxypropane (1,3-DAP) in the presence of copper(II) salts (Cu(BF4)2·6H2O, Cu(ClO4)2·6H2O/H3BO3/Ar) and triethylamine (TEA) in a single pot result in self-assembly of dimeric dodecacopper supramolecular architectures of 30-membered hexatopic macrocyclic ligands (H6L4 and H6L5) with unique and fascinating structures having the BO3(3-) anion as the central species bonded to all six copper centers in a symmetrical fashion (μ6-BO3(3-)). A number of closely related macrocyclic hexacopper complexes are reported: {[Cu6(L4)(μ6-BO3)(μ-H2O)(C3H7NO)2(BF4)][BF4]2·3C3H7NO}2 (1) (DMF = C3H7NO), {[Cu6(L4)(μ6-BO3)(μ-C3H7NO)3][ClO4]3·3C3H7NO}2 (2), {[Cu6(L5)(μ6-BO3)(μ-OH)(H2O)3(C3H7NO)][BF4]2·6C3H7NO·4C2H5OH·2H2O}2 (3), {[Cu6(L5)(μ6-BO3)(μ-CH3OH)(CH3OH)2][ClO4]3·10H2O}2 (4), and {[Cu6(L5)(μ6-BO3)(μ-CH3CO2)(μ-CH3O)(CH3OH)][BF4]·13CH3OH·8H2O}2 (5). A polymeric side product {[Cu2(H2L2)(CH3OH)(BF4)][BF4]}n (6), involving a 2 + 2 macrocyclic ligand, was also isolated and structurally characterized.
View Article and Find Full Text PDFThe reactions of the carbonate radical anion (CO3 (.) (-) ) with vitamin B12 derivatives were studied by pulse radiolysis. The carbonate radical anion directly oxidizes the metal center of cob(II)alamin quantitively to give hydroxycobalamin, with a bimolecular rate constant of 2.
View Article and Find Full Text PDFAmbient desorption/ionization mass spectrometry (ADI-MS) aims to enable direct analysis of gaseous, liquid, and/or solid samples under ambient conditions. In ADI-MS, different types of desorption/ionization sources are classified according to their basic method of operation, namely spray-based, laser-based, or plasma-based. This review discusses many of the plasma-based techniques coupled to mass spectrometry in terms of their current performance in fast qualitative screening and quantitative analysis.
View Article and Find Full Text PDFA major design objective of portable mass spectrometers is the ability to perform in situ chemical analysis on target samples in their native states in the undisturbed environment. The miniature instrument described here is fully contained in a wearable backpack (10 kg) with a geometry-independent low-temperature plasma (LTP) ion source integrated into a hand-held head unit (2 kg) to allow direct surface sampling and analysis. Detection of chemical warfare agent (CWA) simulants, illicit drugs, and explosives is demonstrated at nanogram levels directly from surfaces in near real time including those that have complex geometries, those that are heat-sensitive, and those bearing complex sample matrices.
View Article and Find Full Text PDFThe flowing atmospheric-pressure afterglow (FAPA) is a promising new source for atmospheric-pressure, ambient desorption/ionization mass spectrometry. However, problems exist with reproducible sample introduction into the FAPA source. To overcome this limitation, a new FAPA geometry has been developed in which concentric tubular electrodes are utilized to form a halo-shaped discharge; this geometry has been termed the halo-FAPA or h-FAPA.
View Article and Find Full Text PDFWe describe a handheld, wireless low-temperature plasma (LTP) ambient ionization source and its performance on a benchtop and a miniature mass spectrometer. The source, which is inexpensive to build and operate, is battery-powered and utilizes miniature helium cylinders or air as the discharge gas. Comparison of a conventional, large-scale LTP source against the handheld LTP source, which uses less helium and power than the large-scale version, revealed that the handheld source had similar or slightly better analytical performance.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
January 2013
Rationale: This paper reports the development of arrays of capillary-based low-temperature plasma (LTP) probes for direct sample analysis. These probe arrays allow a higher surface area to be analyzed, increasing the throughput in large sample analysis. Validation of these arrays was performed on illicit, cathinone-based drugs marketed as 'bath salts'.
View Article and Find Full Text PDFOne of the fastest developing fields in analytical spectrochemistry in recent years is ambient desorption/ionization mass spectrometry (ADI-MS). This burgeoning interest has been due to the demonstrated advantages of the method: simple mass spectra, little or no sample preparation, and applicability to samples in the solid, liquid, or gaseous state. One such ADI-MS source, the flowing atmospheric-pressure afterglow (FAPA), is capable of direct analysis of solids just by aiming the source at the solid surface and sampling the produced ions into a mass spectrometer.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
February 2012
The advent of ambient desorption/ionization mass spectrometry (ADI-MS) has led to the development of a large number of atmospheric-pressure ionization sources. The largest group of such sources is based on electrical discharges; yet, the desorption and ionization processes that they employ remain largely uncharacterized. Here, the atmospheric-pressure glow discharge (APGD) and afterglow of a helium flowing atmospheric-pressure afterglow (FAPA) ionization source were examined by optical emission spectroscopy.
View Article and Find Full Text PDFThe advent of ambient desorption/ionization mass spectrometry has resulted in a strong interest in ionization sources that are capable of direct analyte sampling and ionization. One source that has enjoyed increasing interest is the flowing atmospheric-pressure afterglow (FAPA). The FAPA has been proven capable of directly desorbing/ionizing samples in any phase (solid, liquid, or gas) and with impressive limits of detection (<100 fmol).
View Article and Find Full Text PDF