Homoleptic transition-metal complexes of 2,2':6',2″-terpyridine () and substituted derivatives of the form [M()] display a wide range of redox potentials that correlate well to the Hammett parameter of the terpy substituents. Less is known about the impact of incorporating a phenyl spacer between the functional group responsible for controlling the electron density of terpy and how that translates to metal complexes of the form [M()], where M = Mn, Fe, Co, Ni, and Zn. Herein, we report our studies on these complexes revealed a good correlation of redox potentials of both metal- and ligand-centered events with the Hammett parameters of the aryl substituents, regardless of aryl-substitution pattern (i.
View Article and Find Full Text PDFA series of 18 ruthenium(II) polypyridyl complexes were synthesized and evaluated under electrochemically oxidative conditions, which generates the Ru(III) oxidation state and mimics the harsh conditions experienced during the kinetically limited regime that can occur in dye-sensitized solar cells (DSSCs) and dye-sensitized photo-electrosynthesis cells, to further develop fundamental insights into the factors governing molecular sensitizer surface stability in aqueous 0.1 M HClO. Both desorption and oxidatively induced ligand substitution were observed on planar fluorine-doped tin oxide (FTO) electrodes, with a dependence on the E Ru(III/II) redox potential dictating the comparative ratios of the processes.
View Article and Find Full Text PDFThe oxidative stability of the molecular components of dye-sensitized photoelectrosynthesis cells for solar water splitting remains to be explored systematically. We report here the results of an electrochemical study on the oxidative stability of ruthenium(II) polypyridyl complexes surface-bound to fluorine-doped tin oxide electrodes in acidic solutions and, to a lesser extent, as a function of pH and solvent with electrochemical monitoring. Desorption occurs for the Ru(II) forms of the surface-bound complexes with oxidation to Ru(III) enhancing both desorption and decomposition.
View Article and Find Full Text PDFControllable electrode surface modification is important in a number of fields, especially those with solar fuels applications. Electropolymerization is one surface modification technique that electrodeposits a polymeric film at the surface of an electrode by utilizing an applied potential to initiate the polymerization of substrates in the Helmholtz layer. This useful technique was first established by a Murray-Meyer collaboration at the University of North Carolina at Chapel Hill in the early 1980s and utilized to study numerous physical phenomena of films containing inorganic complexes as the monomeric substrate.
View Article and Find Full Text PDF