Publications by authors named "Jacob Steenwyk"

The role of the fungal mitochondria goes far beyond energy metabolism. The genomes of 318 Aspergillus fumigatus clinical and environmental isolates from different geographic origins were analyzed aiming to study the mitochondrial sequences from populations sensitive and resistant to azoles. Our results show that A.

View Article and Find Full Text PDF

Background: Genomic surveillance is extensively used for tracking public health outbreaks and healthcare-associated pathogens. Despite advancements in bioinformatics pipelines, there are still significant challenges in terms of infrastructure, expertise, and security when it comes to continuous surveillance. The existing pipelines often require the user to set up and manage their own infrastructure and are not designed for continuous surveillance that demands integration of new and regularly generated sequencing data with previous analyses.

View Article and Find Full Text PDF
Article Synopsis
  • Multiple sequence alignments and phylogenetic trees are essential tools in biology research, providing detailed biological insights.
  • PhyKIT is a software tool designed to streamline the analysis of these alignments and trees, offering various functionalities like constructing supermatrices and identifying errors in orthology inference.
  • The text outlines several protocols for using PhyKIT, covering installation, data processing, and features that aid in understanding gene functions and evolutionary relationships.
View Article and Find Full Text PDF

f. sp. (FOLac) is a soil- and seedborne fungal pathogen that causes Fusarium wilt of lettuce, an important disease threatening global lettuce production.

View Article and Find Full Text PDF
Article Synopsis
  • 53 isolates of Aspergillus section Nidulantes fungi were studied, revealing that 30 clinical isolates, including four from COVID-19 patients, were misidentified as the cryptic pathogen A. latus, which resulted from a hybridization event.
  • The research showed that A. latus displays significant genetic diversity and that both parental subgenomes are actively expressed in clinical isolates, responding to different environmental conditions.
  • Key differences in drug resistance and growth in oxidative stress were found between A. latus hybrids and related species, along with four features that could help in accurately identifying A. latus in the future.
View Article and Find Full Text PDF
Article Synopsis
  • Distantly related organisms, like cactophilic yeasts, can evolve similar traits and lifestyles to survive in comparable environments, with this study analyzing over 1,000 yeast species to understand their convergent evolution.
  • Researchers found that cactophily (association with cacti) evolved independently about 17 times and could be predicted with 76% accuracy using genomic and phenotypic data, with thermotolerance being the most significant factor.
  • The study also revealed horizontal gene transfer and duplications in genes related to plant cell wall degradation, indicating that these adaptive traits arose from different molecular pathways, and highlighted a potential link between cactophilic lifestyles and yeast becoming human pathogens.
View Article and Find Full Text PDF

Ancient divergences within Opisthokonta-a major lineage that includes organisms in the kingdoms Animalia, Fungi, and their unicellular relatives-remain contentious. To assess progress toward a genome-scale Opisthokonta phylogeny, we conducted the most taxon rich phylogenomic analysis using sets of genes inferred with different orthology inference methods and established the geological timeline of Opisthokonta diversification. We also conducted sensitivity analysis by subsampling genes or taxa from the full data matrix based on filtering criteria previously shown to improve phylogenomic inference.

View Article and Find Full Text PDF
Article Synopsis
  • Phylogenomics shows that the Tree of Life can have complex, network-like structures instead of just a simple branching pattern, due to processes like hybridization/introgression and horizontal gene transfer.
  • These processes can create patterns that resemble incomplete lineage sorting, which can lead to confusion in understanding evolutionary relationships.
  • The article outlines a workflow for analyzing these evolutionary histories, highlights how timing of events can clarify distinctions between different modes of evolution, and emphasizes the importance of recognizing these complex patterns to better understand the history of life.
View Article and Find Full Text PDF

Mass extinction has often paved the way for rapid evolutionary radiation, resulting in the emergence of diverse taxa within specific lineages. The emergence and diversification of carnivorous nematode-trapping fungi (NTF) in Ascomycota have been linked to the Permian-Triassic (PT) extinction, but the processes underlying NTF radiation remain unclear. We conducted phylogenomic analyses using 23 genomes that represent three NTF lineages, each employing distinct nematode traps-mechanical traps ( spp.

View Article and Find Full Text PDF
Article Synopsis
  • Aspergillus fumigatus causes the infection known as aspergillosis and uses asexual spores to infect hosts, but little is known about how it evades the immune system.
  • In this study, researchers analyzed the conidial surface proteins of A. fumigatus and compared them to two non-pathogenic species, discovering 62 proteins unique to A. fumigatus.
  • Testing null mutants for 42 genes revealed that deleting 33 of these genes affected the fungus's ability to resist immune responses, particularly highlighting a gene that influences the proinflammatory cytokine IL-1β, which is crucial for infection in a mouse model.
View Article and Find Full Text PDF

Gene gains and losses are a major driver of genome evolution; their precise characterization can provide insights into the origin and diversification of major lineages. Here, we examined gene family evolution of 1,154 genomes from nearly all known species in the medically and technologically important yeast subphylum Saccharomycotina. We found that yeast gene family and genome evolution are distinct from plants, animals, and filamentous ascomycetes and are characterized by small genome sizes and smaller gene numbers but larger gene family sizes.

View Article and Find Full Text PDF

Reconstructing the tree of life remains a central goal in biology. Early methods, which relied on small numbers of morphological or genetic characters, often yielded conflicting evolutionary histories, undermining confidence in the results. Investigations based on phylogenomics, which use hundreds to thousands of loci for phylogenetic inquiry, have provided a clearer picture of life's history, but certain branches remain problematic.

View Article and Find Full Text PDF
Article Synopsis
  • Aspergillus fumigatus is a dangerous fungal pathogen responsible for over 400,000 infections annually and significantly high mortality rates, exhibiting variations in its virulence among different strains.
  • Research suggests that A. fumigatus strains have greater genetic variation in noncoding regions upstream of genes compared to coding regions, which could indicate differences in gene regulation.
  • Analysis of 263 A. fumigatus strains found that noncoding regions showed more sequence variation, with many of these regions being linked to genes that influence the pathogen's virulence, suggesting that this variation may impact phenotypic differences among strains.
View Article and Find Full Text PDF

Organisms exhibit extensive variation in ecological niche breadth, from very narrow (specialists) to very broad (generalists). Two general paradigms have been proposed to explain this variation: (i) trade-offs between performance efficiency and breadth and (ii) the joint influence of extrinsic (environmental) and intrinsic (genomic) factors. We assembled genomic, metabolic, and ecological data from nearly all known species of the ancient fungal subphylum Saccharomycotina (1154 yeast strains from 1051 species), grown in 24 different environmental conditions, to examine niche breadth evolution.

View Article and Find Full Text PDF

Fungi biosynthesize diverse secondary metabolites, small organic bioactive molecules with key roles in fungal ecology. Fungal secondary metabolites are often encoded by physically clustered genes known as biosynthetic gene clusters (BGCs). Fungi in the genus Penicillium produce a cadre of secondary metabolites, some of which are useful (e.

View Article and Find Full Text PDF
Article Synopsis
  • Modern taxonomic classification of fungi often relies on molecular markers, but this study employs phylogenomics to analyze 710 fungal genomes and reconstruct evolutionary relationships.
  • * The research generated a new set of 1,362 high-quality molecular markers and found that about 7.59% of the fungal strains were previously misidentified, highlighting the need for better population-level sampling in species classification.
  • * The findings indicate that using genomic data can significantly improve the accuracy of identifying fungal species and help resolve ongoing taxonomic debates, ultimately supporting the construction of a more precise Tree of Life.
View Article and Find Full Text PDF

Elucidating gene function is a major goal in biology, especially among non-model organisms. However, doing so is complicated by the fact that molecular conservation does not always mirror functional conservation, and that complex relationships among genes are responsible for encoding pathways and higher-order biological processes. Co-expression, a promising approach for predicting gene function, relies on the general principal that genes with similar expression patterns across multiple conditions will likely be involved in the same biological process.

View Article and Find Full Text PDF

Core histone genes display a remarkable diversity of cis-regulatory mechanisms despite their protein sequence conservation. However, the dynamics and significance of this regulatory turnover are not well understood. Here, we describe the evolutionary history of core histone gene regulation across 400 million years in budding yeasts.

View Article and Find Full Text PDF

is a deadly fungal pathogen, responsible for >400,000 infections/year and high mortality rates. strains exhibit variation in infection-relevant traits, including in their virulence. However, most protein-coding genes, including those that modulate its virulence, are shared between strains and closely related non-pathogenic relatives.

View Article and Find Full Text PDF

Among molecular biologists, the group of fungi called Saccharomycotina is famous for its yeasts. These yeasts in turn are famous for what they have in common-genetic, biochemical, and cell-biological characteristics that serve as models for plants and animals. But behind the apparent homogeneity of Saccharomycotina species lie a wealth of differences.

View Article and Find Full Text PDF

Although Penicillium molds can have significant impacts on agricultural, industrial, and biomedical systems, the ecological roles of Penicillium species in many microbiomes are not well characterized. Here we utilized a collection of 35 Penicillium strains isolated from cheese rinds to broadly investigate the genomic potential for secondary metabolism in cheese-associated Penicillium species, the impact of Penicillium on bacterial community assembly, and mechanisms of Penicillium-bacteria interactions. Using antiSMASH, we identified 1558 biosynthetic gene clusters, 406 of which were mapped to known pathways, including several mycotoxins and antimicrobial compounds.

View Article and Find Full Text PDF

, an important pulmonary fungal pathogen causing several diseases collectively called aspergillosis, relies on asexual spores (conidia) for initiating host infection. Here, we used a phylogenomic approach to compare proteins in the conidial surface of , two closely related non-pathogenic species, and , and the cryptic pathogen . After identifying 62 proteins uniquely expressed on the conidial surface, we assessed null mutants for 42 genes encoding conidial proteins.

View Article and Find Full Text PDF

Many distantly related organisms have convergently evolved traits and lifestyles that enable them to live in similar ecological environments. However, the extent of phenotypic convergence evolving through the same or distinct genetic trajectories remains an open question. Here, we leverage a comprehensive dataset of genomic and phenotypic data from 1,049 yeast species in the subphylum Saccharomycotina (Kingdom Fungi, Phylum Ascomycota) to explore signatures of convergent evolution in cactophilic yeasts, ecological specialists associated with cacti.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of conidial surface proteins in the pathogenic fungus responsible for aspergillosis and compares it with non-pathogenic species.
  • Researchers identified 62 proteins specifically expressed on the surface of the conidia and deleted genes for 42 of these proteins to assess their impact on infection.
  • Findings indicate that certain proteins, particularly one related to IL-1β production, are crucial for the fungus in evading the immune response during initial host infection.
View Article and Find Full Text PDF