Study Objectives: To evaluate wearable devices and machine learning for detecting sleep apnea in patients with stroke at an acute inpatient rehabilitation facility (IRF).
Methods: A total of 76 individuals with stroke wore a standard home sleep apnea test (ApneaLink Air), a multimodal, wireless wearable sensor system (ANNE), and a research-grade actigraphy device (ActiWatch) for at least 1 night during their first week after IRF admission as part of a larger clinical trial. Logistic regression algorithms were trained to detect sleep apnea using biometric features obtained from the ANNE sensors and ground truth apnea rating from the ApneaLink Air.
Background And Purpose: Cognitive impairment is a critical health problem in the elderly population. Research has shown that patients with mild cognitive impairment (MCI) may develop dementia in later years. Therefore, early identification of MCI could allow for interventions to help delay the progression of this devastating disease.
View Article and Find Full Text PDF