Board, card or video games have been played by virtually every individual in the world. Games are popular because they are intuitive and fun. These distinctive qualities of games also make them ideal for studying the mind.
View Article and Find Full Text PDFRapid individual cognitive phenotyping holds the potential to revolutionize domains as wide-ranging as personalized learning, employment practices, and precision psychiatry. Going beyond limitations imposed by traditional lab-based experiments, new efforts have been underway toward greater ecological validity and participant diversity to capture the full range of individual differences in cognitive abilities and behaviors across the general population. Building on this, we developed Skill Lab, a novel game-based tool that simultaneously assesses a broad suite of cognitive abilities while providing an engaging narrative.
View Article and Find Full Text PDFPeople differ in intelligence, cognitive ability, personality traits, motivation, and similar valued and, to a large degree, inherited characteristics that determine success and achievements. When does individual heterogeneity lead to a fair distribution of rewards and outcomes? Here, we develop this question theoretically and then test it experimentally for a set of structural conditions in a specific interaction situation. We first catalogue the functional relationship between individual endowments and outcomes to distinguish between fairness concepts such as meritocracy, equality of opportunity, equality of outcomes, and Rawl's theory of justice.
View Article and Find Full Text PDFThe question of whether a singularity can form in an initially regular flow, described by the 3D incompressible Navier-Stokes (NS) equations, is a fundamental problem in mathematical physics. The NS regularity problem is super-critical, i.e.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFWe discuss the commonly encountered problem when optimizing nuclear magnetic resonance (NMR) pulses using optimal control that the otherwise very precise NMR theory does not provide as excellent agreement with experiments. We hypothesize that this disagreement is due to phase transients in the pulse due to abrupt phase and amplitude changes resulting in a large bandwidth. We apply the gradient optimization using parametrization algorithm that gives high fidelity pulses with a low bandwidth compared to the typical gradient ascent pulse engineering pulses.
View Article and Find Full Text PDFWe introduce a remote interface to control and optimize the experimental production of Bose-Einstein condensates (BECs) and find improved solutions using two distinct implementations. First, a team of theoreticians used a remote version of their dressed chopped random basis optimization algorithm (RedCRAB), and second, a gamified interface allowed 600 citizen scientists from around the world to participate in real-time optimization. Quantitative studies of player search behavior demonstrated that they collectively engage in a combination of local and global searches.
View Article and Find Full Text PDFHumans routinely solve problems of immense computational complexity by intuitively forming simple, low-dimensional heuristic strategies. Citizen science (or crowd sourcing) is a way of exploiting this ability by presenting scientific research problems to non-experts. 'Gamification'--the application of game elements in a non-game context--is an effective tool with which to enable citizen scientists to provide solutions to research problems.
View Article and Find Full Text PDFThe dispersive interaction of atoms and a far-detuned light field allows nondestructive imaging of the density oscillations in Bose-Einstein condensates. Starting from a ground state condensate, we investigate how the measurement backaction leads to squeezing and entanglement of the quantized density oscillations. We show that properly timed, stroboscopic imaging and feedback can be used to selectively address specific eigenmodes and avoid excitation of nontargeted modes of the system.
View Article and Find Full Text PDFWe describe an easily implementable method for non-destructive measurements of ultracold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. The signal-to-noise ratio is analyzed theoretically and, in the absence of experimental imperfections, the sensitivity limit is found to be identical to other conventional dispersive imaging techniques. The dependence on laser detuning, atomic density, and temperature is characterized in a detailed comparison with theory.
View Article and Find Full Text PDFUltracold atoms in optical lattices provide a versatile tool with which to investigate fundamental properties of quantum many-body systems. In particular, the high degree of control of experimental parameters has allowed the study of many interesting phenomena, such as quantum phase transitions and quantum spin dynamics. Here we demonstrate how such control can be implemented at the most fundamental level of a single spin at a specific site of an optical lattice.
View Article and Find Full Text PDFThe reliable detection of single quantum particles has revolutionized the field of quantum optics and quantum information processing. For several years, researchers have aspired to extend such detection possibilities to larger-scale, strongly correlated quantum systems in order to record in situ images of a quantum fluid in which each underlying quantum particle is detected. Here we report fluorescence imaging of strongly interacting bosonic Mott insulators in an optical lattice with single-atom and single-site resolution.
View Article and Find Full Text PDFWe show that it is possible to generate continuous-wave fields and pulses of polarization squeezed light by sending classical, linearly polarized laser light twice through an atomic sample which causes an optical Faraday rotation of the field polarization. We characterize the performance of the process and we show that an appreciable degree of squeezing can be obtained under realistic physical assumptions.
View Article and Find Full Text PDFQuantum teleportation is an important ingredient in distributed quantum networks, and can also serve as an elementary operation in quantum computers. Teleportation was first demonstrated as a transfer of a quantum state of light onto another light beam; later developments used optical relays and demonstrated entanglement swapping for continuous variables. The teleportation of a quantum state between two single material particles (trapped ions) has now also been achieved.
View Article and Find Full Text PDFThe information carrier of today's communications, a weak pulse of light, is an intrinsically quantum object. As a consequence, complete information about the pulse cannot be perfectly recorded in a classical memory, even in principle. In the field of quantum information, this has led to the long-standing challenge of how to achieve a high-fidelity transfer of an independently prepared quantum state of light onto an atomic quantum state.
View Article and Find Full Text PDF