Products and starting materials containing volatile organic compounds (VOCs) can easily be found in a variety of businesses, making them a common source of occupational exposure. To prevent negative impacts on employee health, field industrial hygienists must conduct regular sampling to ensure exposures remain below the regulatory limits set by governmental and professional associations. As such, the need for sensitive and reliable exposure assessment techniques becomes evident.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2022
Millions of workers are occupationally exposed to volatile organic compounds (VOCs) annually. Current exposure assessment techniques primarily utilize sorbent based preconcentrators to collect VOCs, with analysis performed using chemical or thermal desorption. Chemical desorption typically analyzes 1 µL out of a 1 mL (0.
View Article and Find Full Text PDFEnviron Health Insights
February 2022
Passive sampling using diffusive samplers has become popular as a convenient means of occupational compliance sampling for volatile organic compounds (VOCs). However, diffusive samplers possess sensitivity limitations when sampling low concentrations and for short durations. To reduce these limitations, our research team has been developing a novel method of sample recovery called photothermal desorption (PTD), which uses high energy visible light pulses to desorb analytes from sampling media.
View Article and Find Full Text PDFInt J Environ Res Public Health
January 2022
In recent years, the introduction and use of new nanomaterials in construction has increased at a rapid rate. Exterior surface paints have been a product that have had these nanomaterials added to them. In this study, the effects of natural weathering and exposure to atmospheric agents was examined to determine the detrimental effects on outdoor paint that has been created with nanomaterials.
View Article and Find Full Text PDFObjective: Health care professionals and governmental agencies are in consensus regarding contact and droplet transmission of infectious diseases. However, personal protective equipment (PPE) efficacy is not considered for aerosol or airborne transmission of infectious diseases. This review discusses the inhalation of virus-laden aerosols as a viable mechanism of transmission of various respiratory infectious diseases and PPE efficacy.
View Article and Find Full Text PDFVolatile organic compounds (VOCs) pose an occupational exposure risk due to their commonplace usage across industrial and vocational sectors. With millions of workers annually exposed, monitoring personal VOC exposures becomes an important task. As such, there is a need to improve current monitoring techniques by increasing sensitivity and reducing analysis costs.
View Article and Find Full Text PDF