Cancer immunotherapies, including adoptive T cell transfer, can be ineffective because tumors evolve to display antigen-loss-variant clones. Therapies that activate multiple branches of the immune system may eliminate escape variants. Here, we show that melanoma-specific CD4 T cell therapy in combination with OX40 co-stimulation or CTLA-4 blockade can eradicate melanomas containing antigen escape variants.
View Article and Find Full Text PDFAccurate bone registration is critical for computer navigation and robotic surgery. Existing registration systems are expensive, cumbersome, limited in accuracy and/or require intraoperative radiation. We recently reported a novel method of registration utilizing an inexpensive, compact, and X-ray-free structured-light 3D scanner.
View Article and Find Full Text PDFIntratumoral therapy with oncolytic viruses is increasingly being explored as a strategy to potentiate an immune response against cancer, but it remains unknown whether such therapy should be restricted to cancers sensitive to virus-mediated lysis. Using Newcastle Disease Virus (NDV) as a model, we explore immunogenic potential of an oncolytic virus in bladder cancer, where existing immunotherapy with PD-1 and PD-L1-targeting antibodies to date has shown suboptimal response rates. Infection of human and mouse bladder cancer cells with NDV resulted in immunogenic cell death, activation of innate immune pathways, and upregulation of MHC and PD-L1 in all tested cell lines, including the cell lines completely resistant to NDV-mediated lysis.
View Article and Find Full Text PDFIntralesional therapy with oncolytic viruses (OVs) leads to the activation of local and systemic immune pathways, which may present targets for further combinatorial therapies. Here, we used human tumor histocultures as well as syngeneic tumor models treated with Newcastle disease virus (NDV) to identify a range of immune targets upregulated with OV treatment. Despite tumor infiltration of effector T lymphocytes in response to NDV, there was ongoing inhibition through programmed death ligand 1 (PD-L1), acting as a mechanism of early and late adaptive immune resistance to the type I IFN response and T cell infiltration, respectively.
View Article and Find Full Text PDFAnti-viral immunity presents a major hurdle for systemically administered oncolytic viruses (OV). Intratumoral OV therapy has a potential to overcome this problem through activation of anti-tumor immune response, with local and abscopal effects. However, the effects of anti-viral immunity in such a setting are still not well defined.
View Article and Find Full Text PDFSmall cell carcinoma of the ovary, hypercalcemic type (SCCOHT), is a highly aggressive monogenic cancer driven by SMARCA4 mutations. Here, we report responses to anti-PD1 immunotherapy in four patients and characterize the immune landscape of SCCOHT tumors using quantitative immunofluorescence and gene expression profiling. Unexpectedly for a low mutation burden cancer, the majority of the tumors (eight of 11 cases) demonstrated PD-L1 expression with strong associated T-cell infiltration (R2 = 0.
View Article and Find Full Text PDFWe present an exceptional case of a patient with high-grade serous ovarian cancer, treated with multiple chemotherapy regimens, who exhibited regression of some metastatic lesions with concomitant progression of other lesions during a treatment-free period. Using immunogenomic approaches, we found that progressing metastases were characterized by immune cell exclusion, whereas regressing and stable metastases were infiltrated by CD8 and CD4 T cells and exhibited oligoclonal expansion of specific T cell subsets. We also detected CD8 T cell reactivity against predicted neoepitopes after isolation of cells from a blood sample taken almost 3 years after the tumors were resected.
View Article and Find Full Text PDFAdvanced cancers remain a therapeutic challenge despite recent progress in targeted therapy and immunotherapy. Novel approaches are needed to alter the tumor immunosuppressive microenvironment and to facilitate the recognition of tumor antigens that leads to antitumor immunity. Poxviruses, such as modified vaccinia virus Ankara (MVA), have potential as immunotherapeutic agents.
View Article and Find Full Text PDFEmerging data suggest that locoregional cancer therapeutic approaches with oncolytic viruses can lead to systemic anti-tumour immunity, although the appropriate targets for intratumoral immunomodulation using this strategy are not known. Here we find that intratumoral therapy with Newcastle disease virus (NDV), in addition to the activation of innate immunity, upregulates the expression of T-cell co-stimulatory receptors, with the inducible co-stimulator (ICOS) being most notable. To explore ICOS as a direct target in the tumour, we engineered a recombinant NDV-expressing ICOS ligand (NDV-ICOSL).
View Article and Find Full Text PDFFinding a valid antibody to detect mouse programmed death ligand 1 (PDL-1) by immunohistochemistry or immunofluorescence staining has been notoriously difficult. Successful validation of an antibody requires the use of multiple detection methods with the ability to compare appropriate positive and negative controls. Here, we describe in detail the protocols used to validate a mouse-specific PDL-1 antibody used in immunohistochemistry staining with an mRNA in situ hybridization on adjacent sections of mouse B16 tumor.
View Article and Find Full Text PDFPrevious data obtained in our laboratory suggested that there may be constitutive signaling through the myeloid differentiation primary response gene 88 (Myd88)-dependent signaling cascade in murine mammary carcinoma. Here, we extended these findings by showing that, in the absence of an added Toll-like receptor (TLR) agonist, the myddosome complex was preformed in 4T1 tumor cells, and that Myd88 influenced cytoplasmic extracellular signal-regulated kinase (Erk)1/Erk2 levels, nuclear levels of nuclear factor-kappaB (NFκB) and signal transducer and activator of transcription 5 (STAT5), tumor-derived chemokine (C-C motif) ligand 2 (CCL2) expression, and in vitro and in vivo tumor growth. In addition, RNA-sequencing revealed that Myd88-dependent signaling enhanced the expression of genes that could contribute to breast cancer progression and genes previously associated with poor outcome for patients with breast cancer, in addition to suppressing the expression of genes capable of inhibiting breast cancer progression.
View Article and Find Full Text PDFPreviously we reported that Myd88 contributed to tumor progression. To begin to decipher what may be inducing Myd88 dependent signaling we focused on proteins that could function as damage associated molecular pattern molecules (DAMPs) since DAMPs have been reported to be secreted by tumors, and certain DAMPs mediate effects through toll-like receptors. A screen of mammary carcinoma for DAMP expression showed HMGB1 and HSP60 were significantly elevated relative to normal mammary epithelium, and targeting these DAMPs, or receptors for these DAMPs influenced growth of tumor cells.
View Article and Find Full Text PDF