Photodetectors with internal gain are of great interest for imaging applications, since internal gain reduces the effective noise of readout electronics. High-gain photodetectors have been demonstrated, but only individually rather than as a full array in a camera. Consequently, there has been little investigation of the interaction between camera complementary metal oxide semiconductor (CMOS) electronics and the slow response time that high-gain photodetectors often exhibit.
View Article and Find Full Text PDFReconfigurable detectors with dynamically selectable sensing and readout modes are highly desirable for implementing edge computing as well as enabling advanced imaging techniques such as foveation. The concept of a camera system capable of simultaneous passive imaging and dynamic ranging in different regions of the detector is presented. Such an adaptive-autonomous detector with both spatial and temporal control requires programmable window of exposure (time frames), ability to switch between readout modes such as full-frame imaging and zero-suppressed data, modification of the number of pixel data bits and independent programmability for distinct detector regions.
View Article and Find Full Text PDF