Publications by authors named "Jacob R Waldbauer"

bacteria are enriched on poly(ethylene terephthalate) (PET) microplastics in wastewaters and urban rivers, but the PET-degrading mechanisms remain unclear. Here, we investigated these mechanisms with KF-1, a wastewater isolate, by combining microscopy, spectroscopy, proteomics, protein modeling, and genetic engineering. Compared to minor dents on PET films, scanning electron microscopy revealed significant fragmentation of PET pellets, resulting in a 3.

View Article and Find Full Text PDF

Microbial organic matter turnover is an important contributor to the terrestrial carbon dioxide (CO) budget. Partitioning of organic carbons into biomass relative to CO efflux, termed carbon-use efficiency (CUE), is widely used to characterize organic carbon cycling by soil microorganisms. Recent studies challenge proposals of CUE dependence on the oxidation state of the substrate carbon and implicate instead metabolic strategies.

View Article and Find Full Text PDF
Article Synopsis
  • Seasonal changes in light and groundwater chemistry significantly impact the structure and function of cyanobacterial mats, particularly in the Middle Island Sinkhole (MIS).
  • These changes lead to shifts in dominant cyanobacteria species, from Phormidium in summer to Planktothrix in autumn, accompanied by increased populations of diatoms and various sulfur-related bacteria.
  • The presence of specialized light-harvesting proteins in cyanobacteria and higher abundance of Beggiatoa sulfur oxidation proteins in autumn suggest physiological adaptations to seasonal light variations, indicating strong interactions among different microbial groups affecting biogeochemical processes in these ecosystems.
View Article and Find Full Text PDF

Microbial activity in Arctic soils controls the cycling of significant stores of organic carbon and nutrients. We studied processes in Alaskan soils using original metaproteomic methods in order to relate important heterotrophic functions to microbial taxa and to understand the microbial response to Arctic greening. Major bacterial groups show strong metabolic specialization in organic topsoils.

View Article and Find Full Text PDF

Marine picocyanobacteria and , the most abundant photosynthetic cells in the oceans, are generally thought to have a primarily single-celled and free-living lifestyle. However, while studying the ability of picocyanobacteria to supplement photosynthetic carbon fixation with the use of exogenous organic carbon, we found the widespread occurrence of genes for breaking down chitin, an abundant source of organic carbon that exists primarily as particles. We show that cells that encode a chitin degradation pathway display chitin degradation activity, attach to chitin particles, and show enhanced growth under low light conditions when exposed to chitosan, a partially deacetylated soluble form of chitin.

View Article and Find Full Text PDF

Microbial growth in many environments is limited by nitrogen availability, yet there is limited understanding of how complex communities compete for and allocate this resource. Here we develop a broadly applicable approach to track biosynthetic incorporation of N-labelled nitrogen substrates into microbial community proteomes, enabling quantification of protein turnover and N allocation to specific cellular functions in individual taxa. Application to oligotrophic ocean surface water identifies taxa-specific substrate preferences and a distinct subset of protein functions undergoing active biosynthesis.

View Article and Find Full Text PDF

DsrC is a key protein in dissimilatory sulfur metabolism, where it works as co-substrate of the dissimilatory sulfite reductase DsrAB. DsrC has two conserved cysteines in a C-terminal arm that are converted to a trisulfide upon reduction of sulfite. In sulfate-reducing bacteria, DsrC is essential and previous works suggested additional functions beyond sulfite reduction.

View Article and Find Full Text PDF

Photoheterotrophy is a widespread mode of microbial metabolism, notably in the oligotrophic surface ocean, where microbes experience chronic nutrient limitation. One especially widespread form of photoheterotrophy is based on proteorhodopsin (PR), which uses light to generate proton motive force that can drive ATP synthesis, flagellar movement, or nutrient uptake. To clarify the physiological benefits conferred by PR under nutrient stress conditions, we quantified protein-level gene expression of Vibrio campbellii CAIM 519 under both carbon and nitrogen limitation and under both light and dark conditions.

View Article and Find Full Text PDF

Biological nitrogen fixation is catalyzed by the molybdenum (Mo), vanadium (V) and iron (Fe)-only nitrogenase metalloenzymes. Studies with purified enzymes have found that the 'alternative' V- and Fe-nitrogenases generally reduce N more slowly and produce more byproduct H than the Mo-nitrogenase, leading to an assumption that their usage results in slower growth. Here we show that, in the metabolically versatile photoheterotroph Rhodopseudomonas palustris, the type of carbon substrate influences the relative rates of diazotrophic growth based on different nitrogenase isoforms.

View Article and Find Full Text PDF
Article Synopsis
  • Ecosystems are influenced by 'bottom-up' resources and 'top-down' predation, with viral infections acting as a significant top-down control on microbial growth.
  • Recent advances show that viral infections can alter host metabolism and nutrient cycles, impacting energy flow in aquatic ecosystems through virus-encoded metabolic genes.
  • Understanding the effects of viral infection on nutrient cycling and carbon export requires consideration of the host's physiological state and environmental conditions, as current lab conditions may not accurately reflect real-world scenarios.
View Article and Find Full Text PDF

The building blocks of a virus derived from de novo biosynthesis during infection and/or catabolism of preexisting host cell biomass, and the relative contribution of these 2 sources has important consequences for understanding viral biogeochemistry. We determined the uptake of extracellular nitrogen (N) and its biosynthetic incorporation into both virus and host proteins using an isotope-labeling proteomics approach in a model marine cyanobacterium WH8102 infected by a lytic cyanophage S-SM1. By supplying dissolved N as N postinfection, we found that proteins in progeny phage particles were composed of up to 41% extracellularly derived N, while proteins of the infected host cell showed almost no isotope incorporation, demonstrating that de novo amino acid synthesis continues during infection and contributes specifically and substantially to phage replication.

View Article and Find Full Text PDF

In marine ecosystems, viruses are major disrupters of the direct flow of carbon and nutrients to higher trophic levels. Although the genetic diversity of several eukaryotic phytoplankton virus groups has been characterized, their infection dynamics are less understood, such that the physiological and ecological implications of their diversity remain unclear. We compared genomes and infection phenotypes of the two most closely related cultured phycodnaviruses infecting the widespread picoprasinophyte Ostreococcus lucimarinus under standard- (1.

View Article and Find Full Text PDF

De novo sequencing offers an alternative to database search methods for peptide identification from mass spectra. Since it does not rely on a predetermined database of expected or potential sequences in the sample, de novo sequencing is particularly appropriate for samples lacking a well-defined or comprehensive reference database. However, the low accuracy of many de novo sequence predictions has prevented the widespread use of the variety of sequencing tools currently available.

View Article and Find Full Text PDF

Dissolved organic matter (DOM) plays a central role in the microbial ecology and biogeochemistry of aquatic environments, yet little is known about how the mechanism of DOM release from its ultimate source, primary producer biomass, affects the molecular composition of the inputs to the dissolved pool. Here we used a model marine phytoplankton, the picocyanobacterium Synechococcus WH7803, to compare the composition of DOM released by three mechanisms: exudation, mechanical cell lysis and infection by the lytic phage S-SM1. A broad, untargeted analytical approach reveals the complexity of this freshly sourced DOM, and comparative analysis between DOM produced by the different mechanisms suggests that exudation and viral lysis are sources of unsaturated, oxygen-rich and possibly novel biomolecules.

View Article and Find Full Text PDF

High translational fidelity is commonly considered a requirement for optimal cellular health and protein function. However, recent findings have shown that inducible mistranslation specifically with methionine engendered at the tRNA charging level occurs in mammalian cells, yeast and archaea, yet it was unknown whether bacteria were capable of mounting a similar response. Here, we demonstrate that Escherichia coli misacylates non-methionyl-tRNAs with methionine in response to anaerobiosis and antibiotic exposure via the methionyl-tRNA synthetase (MetRS).

View Article and Find Full Text PDF

Dissolved organic matter (DOM) in the oceans is one of the largest pools of reduced carbon on Earth, comparable in size to the atmospheric CO2 reservoir. A vast number of compounds are present in DOM, and they play important roles in all major element cycles, contribute to the storage of atmospheric CO2 in the ocean, support marine ecosystems, and facilitate interactions between organisms. At the heart of the DOM cycle lie molecular-level relationships between the individual compounds in DOM and the members of the ocean microbiome that produce and consume them.

View Article and Find Full Text PDF

Background: Growth of the ocean's most abundant primary producer, the cyanobacterium Prochlorococcus, is tightly synchronized to the natural 24-hour light-dark cycle. We sought to quantify the relationship between transcriptome and proteome dynamics that underlie this obligate photoautotroph's highly choreographed response to the daily oscillation in energy supply.

Methodology/principal Findings: Using RNA-sequencing transcriptomics and mass spectrometry-based quantitative proteomics, we measured timecourses of paired mRNA-protein abundances for 312 genes every 2 hours over a light-dark cycle.

View Article and Find Full Text PDF

The power of molecular oxygen to drive many crucial biogeochemical processes, from cellular respiration to rock weathering, makes reconstructing the history of its production and accumulation a first-order question for understanding Earth's evolution. Among the various geochemical proxies for the presence of O(2) in the environment, molecular fossils offer a unique record of O(2) where it was first produced and consumed by biology: in sunlit aquatic habitats. As steroid biosynthesis requires molecular oxygen, fossil steranes have been used to draw inferences about aerobiosis in the early Precambrian.

View Article and Find Full Text PDF

There is a close connection between modern-day biosynthesis of particular triterpenoid biomarkers and presence of molecular oxygen in the environment. Thus, the detection of steroid and triterpenoid hydrocarbons far back in Earth history has been used to infer the antiquity of oxygenic photosynthesis. This prompts the question: were these compounds produced similarly in the past? In this paper, we address this question with a review of the current state of knowledge surrounding the oxygen requirement for steroid biosynthesis and phylogenetic patterns in the distribution of steroid and triterpenoid biosynthetic pathways.

View Article and Find Full Text PDF

Earth's biogeochemical cycle of carbon delivers both limestones and organic materials to the crust. In numerous, biologically catalysed redox reactions, hydrogen, sulphur, iron, and oxygen serve prominently as electron donors and acceptors. The progress of these reactions can be reconstructed from records of variations in the abundance of 13C in sedimentary carbonate minerals and organic materials.

View Article and Find Full Text PDF