Traumatic stress, particularly during critical developmental periods such as adolescence, has been strongly linked to an increased propensity and severity of aggression. Existing literature underscores that being a victim of abuse can exacerbate aggressive behaviors, with the amygdala playing a pivotal role in mediating these effects. Historically, animal models have demonstrated that traumatic stressors can increase attack behavior, implicating various amygdala nuclei.
View Article and Find Full Text PDFTraumatic stress has been shown to contribute to persistent behavioral changes, yet the underlying neural pathways are not fully explored. Structural plasticity, a form of long-lasting neural adaptability, offers a plausible mechanism. To scrutinize this, we used the mGRASP imaging technique to visualize synaptic modifications in a pathway formed between neurons of the posterior ventral segment of the medial amygdala and ventrolateral segment of the ventromedial hypothalamus (MeApv-VmHvl), areas we previously showed to be involved in stress-induced excessive aggression.
View Article and Find Full Text PDFKetamine is a dissociative anesthetic that has been shown to have antidepressant effects in humans and has been proposed as a potential treatment for mood disorders such as posttraumatic stress disorder and aggression. However, previous studies from our lab and others have demonstrated that ketamine's effects are highly context- and dose-dependent. In a recent study, we found that 10 mg/kg ketamine could exacerbate the effects of early life stress on excessive aggression in mice.
View Article and Find Full Text PDFHuman aggression typologies largely correspond with those for other animals. While there may be no non-human equivalent of angry reactive aggression, we propose that human proactive aggression is similar to offense in other animals' dominance contests for territory or social status. Like predation/hunting, but unlike defense, offense and proactive aggression are positively reinforcing, involving dopamine release in accumbens.
View Article and Find Full Text PDFFront Behav Neurosci
June 2022
Treatment options for chronically aggressive individuals remain limited despite recent medical advances. Traditional pharmacological agents used to treat aggression, such as atypical antipsychotics, have limited efficacy and are often replete with dangerous side effects. The non-competitive NMDAR antagonists ketamine and memantine are promising alternatives, but their effects appear to be highly dependent on dosage, context, and personal experience.
View Article and Find Full Text PDFRates of childhood trauma are high amongst violent offenders who frequently recidivate. Few clinical options are available to treat excessive and recurring violent aggression associated with childhood trauma. Those that do exist are largely ineffective and often replete with side effects.
View Article and Find Full Text PDFInt J Biochem Cell Biol
January 2022
Excessive and recurring violent aggression is a serious concern for society and a symptom of many psychiatric diseases. Substance abuse, attack experience, and social and traumatic stress increase vulnerability to developing this type of aggression. Glutamate receptors are an intriguing target for long-term treatment.
View Article and Find Full Text PDFThe dorsal raphe (DR) is an evolutionarily conserved brain structure that is involved in aggressive behavior. It projects onto numerous cortical and limbic areas underlying attack behavior. The specific neurocircuit through which the DR regulates aggression, however, is largely unclear.
View Article and Find Full Text PDFTraumatic stress can lead to heightened aggression which may be a symptom of psychiatric diseases such as PTSD and intermittent explosive disorder. The medial amygdala (MeA) is an evolutionarily conserved subnucleus of the amygdala that regulates attack behavior and behavioral responses to stressors. The precise contribution of the MeA in traumatic stress-induced aggression, however, requires further elucidation.
View Article and Find Full Text PDFHeightened aggression can be serious concerns for the individual and society at large and are symptoms of many psychiatric illnesses, such as post-traumatic stress disorder. The circuit and synaptic mechanisms underlying experience-induced aggression increase, however, are poorly understood. Here we find that prior attack experience leading to an increase in aggressive behavior, known as aggression priming, activates neurons within the posterior ventral segment of the medial amygdala (MeApv).
View Article and Find Full Text PDFAlthough menthol, a common flavoring additive to cigarettes, has been found to impact the addictive properties of nicotine cigarettes in smokers little is known about its pharmacological and molecular actions in the brain. Studies were undertaken to examine whether the systemic administration of menthol would modulate nicotine pharmacokinetics, acute pharmacological effects (antinociception and hypothermia) and withdrawal in male ICR mice. In addition, we examined changes in the brain levels of nicotinic receptors of rodents exposed to nicotine and menthol.
View Article and Find Full Text PDFα7 nicotinic acetylcholine receptors (nAChRs) play an important role in synaptic transmission and inflammation. In response to ligands, this receptor channel opens to conduct cations into the cell but desensitizes rapidly. In recent studies we show that α7 nAChRs bind signaling proteins such as heterotrimeric GTP-binding proteins (G proteins).
View Article and Find Full Text PDFDysbindin is a schizophrenia susceptibility gene required for the development of dendritic spines. The expression of dysbindin proteins is decreased in the brains of schizophrenia patients, and neurons in mice carrying a deletion in the dysbindin gene have fewer dendritic spines. Hence, dysbindin might contribute to the spine pathology of schizophrenia, which manifests as a decrease in the number of dendritic spines.
View Article and Find Full Text PDFThe α7 nicotinic receptor (α7) plays an important role in neuronal growth and structural plasticity in the developing brain. We have recently characterized a G-protein-signaling pathway regulated by α7 that directs the growth of neurites in developing neural cells. Now we show that choline activation of α7 promotes a rise in intracellular calcium from local ER stores via Gαq signaling, leading to IP3 receptor (IP3R) activation at the growth cone of differentiating PC12 cells.
View Article and Find Full Text PDFReceptor function is dependent on interaction with various intracellular proteins that ensure the localization and signaling of the receptor. While a number of approaches have been optimized for the isolation, purification, and proteomic characterization of receptor-protein interaction networks (interactomes) in cells, the capture of receptor interactomes and their dynamic properties remains a challenge. In particular, the study of interactome components that bind to the receptor with low affinity or can rapidly dissociate from the macromolecular complex is difficult.
View Article and Find Full Text PDFCholinergic signaling plays an important role in regulating the growth and regeneration of axons in the nervous system. The α7 nicotinic receptor (α7) can drive synaptic development and plasticity in the hippocampus. Here, we show that activation of α7 significantly reduces axon growth in hippocampal neurons by coupling to G protein-regulated inducer of neurite outgrowth 1 (Gprin1), which targets it to the growth cone.
View Article and Find Full Text PDFIt was, until recently, accepted that the two classes of acetylcholine (ACh) receptors are distinct in an important sense: muscarinic ACh receptors signal via heterotrimeric GTP binding proteins (G proteins), whereas nicotinic ACh receptors (nAChRs) open to allow flux of Na+, Ca2+, and K+ ions into the cell after activation. Here we present evidence of direct coupling between G proteins and nAChRs in neurons. Based on proteomic, biophysical, and functional evidence, we hypothesize that binding to G proteins modulates the activity and signaling of nAChRs in cells.
View Article and Find Full Text PDFSmoking is a common addiction and a leading cause of disease. Chronic nicotine exposure is known to activate nicotinic acetylcholine receptors (nAChRs) in immune cells. We demonstrate a novel role for α4 nAChRs in the effect of nicotine on T-cell proliferation and immunity.
View Article and Find Full Text PDFThe effects of alcohol monoterpene menthol, a major active ingredient of the peppermint plant, were tested on the function of human 5-hydroxytryptamine type 3 (5-HT3) receptors expressed in Xenopus laevis oocytes. 5-HT (1 μM)-evoked currents recorded by two-electrode voltage-clamp technique were reversibly inhibited by menthol in a concentration-dependent (IC50 = 163 μM) manner. The effects of menthol developed gradually, reaching a steady-state level within 10-15 minutes and did not involve G-proteins, since GTPγS activity remained unaltered and the effect of menthol was not sensitive to pertussis toxin pretreatment.
View Article and Find Full Text PDFMenthol is a common compound in pharmaceutical and commercial products and a popular additive to cigarettes. The molecular targets of menthol remain poorly defined. In this study we show an effect of menthol on the α7 subunit of the nicotinic acetylcholine (nACh) receptor function.
View Article and Find Full Text PDFIn recent years advancements in proteomic techniques have contributed to the understanding of protein interaction networks (Interactomes) in various cell types. Today, high throughput proteomics promises to define virtually all of the components of a signaling and a regulatory network within cells for various molecules including membrane-spanning receptors. The D2 dopamine receptor (D2R) is a primary mediator of dopamine transmission in the brain.
View Article and Find Full Text PDFThe α7 acetylcholine nicotinic receptor (α7) is an important mediator of cholinergic transmission during brain development. Here we present an intracellular signaling mechanism for the α7 receptor. Proteomic analysis of immunoprecipitated α7 subunits reveals an interaction with a G protein pathway complex (GPC) comprising Gα(i/o), GAP-43 and G protein regulated inducer of neurite outgrowth 1 (Gprin1) in differentiating cells.
View Article and Find Full Text PDFD2 dopamine receptors (D2Rs) represent an important class of receptors in the pharmacological development of novel therapeutic drugs for the treatment of schizophrenia. Recent research into D2R signaling suggests that receptor properties are dependent on interaction with a cohort of dopamine receptor interacting proteins (DRIPs) within a macromolecular structure termed the signalplex. One component of this signalplex is neuronal calcium sensor 1 (NCS-1) a protein found to regulate the phosphorylation, trafficking, and signaling profile of the D2R in neurons.
View Article and Find Full Text PDF