Accumulating genetic evidence suggests that schizophrenia (SZ) is associated with individually rare copy number variations (CNVs) of diverse genes, often specific to single cases. However, the causality of these rare mutations remains unknown. One of the rare CNVs found in SZ cohorts is the duplication of Synaptic Scaffolding Molecule (S-SCAM, also called MAGI-2), which encodes a postsynaptic scaffolding protein controlling synaptic AMPA receptor levels, and thus the strength of excitatory synaptic transmission.
View Article and Find Full Text PDFChannels (Austin)
May 2013
Scaffolding proteins are involved in the incorporation, anchoring, maintenance, and removal of AMPA receptors (AMPARs) at synapses, either through a direct interaction with AMPARs or via indirect association through auxiliary subunits of transmembrane AMPAR regulatory proteins (TARPs). Synaptic scaffolding molecule (S-SCAM) is a newly characterized member of the scaffolding proteins critical for the regulation and maintenance of AMPAR levels at synapses, and directly binds to TARPs through a PDZ interaction. However, the functional significance of S-SCAM-TARP interaction in the regulation of AMPARs has not been tested.
View Article and Find Full Text PDFSynaptic plasticity, the cellular basis of learning and memory, involves the dynamic trafficking of AMPA receptors (AMPARs) into and out of synapses. One of the remaining key unanswered aspects of AMPAR trafficking is the mechanism by which synaptic strength is preserved despite protein turnover. In particular, the identity of AMPAR scaffolding molecule(s) involved in the maintenance of GluA2-containing AMPARs is completely unknown.
View Article and Find Full Text PDFJ Clin Microbiol
September 2009
A large outbreak of novel influenza A (H1N1) virus (swine origin influenza virus [S-OIV]) infection in Milwaukee, WI, occurred in late April 2009. We had recently developed a rapid multiplex reverse transcription-PCR enzyme hybridization assay (FluPlex) to determine the type (A or B) and subtype (H1, H2, H3, H5, H7, H9, N1 [human], N1 [animal], N2, or N7) of influenza viruses, and this assay was used to confirm the diagnoses for the first infected patients in the state. The analytical sensitivity was excellent at 1.
View Article and Find Full Text PDFAssays to simultaneously detect multiple potential agents of bioterrorism are limited. Two multiplex PCR and RT-PCR enzyme hybridization assays (mPCR-EHA, mRT-PCR-EHA) were developed to simultaneously detect many of the CDC category "A" bioterrorism agents. The "Bio T" DNA assay was developed to detect: Variola major (VM), Bacillus anthracis (BA), Yersinia pestis (YP), Francisella tularensis (FT) and Varicella zoster virus (VZV).
View Article and Find Full Text PDFInfluenza Other Respir Viruses
January 2008
Background: Recent outbreaks of highly pathogenic avian influenza and multiple occurrences of zoonotic infection and deaths in humans have sparked a dramatic increase in influenza research. In order to rapidly identify and help prevent future influenza outbreaks, numerous laboratories around the world are working to develop new nucleotide-based diagnostics for identifying and subtyping influenza viruses. While there are several databases that have been developed for manipulating the vast amount of influenza genetic data that have been produced, significant progress can still be made in developing tools for translating the genetic data into effective diagnostics.
View Article and Find Full Text PDF