Many sensory brain areas are organized as topographic maps where neural response preferences change gradually across the cortical surface. Within association cortices, 7-Tesla fMRI and neural model-based analyses have also revealed many topographic maps for quantities like numerosity and event timing, often in similar locations. Numerical and temporal quantity estimations also show behavioral similarities and even interactions.
View Article and Find Full Text PDFQuantifying the timing (duration and frequency) of brief visual events is vital to human perception, multisensory integration and action planning. Tuned neural responses to visual event timing have been found in association cortices, in areas implicated in these processes. Here we ask how these timing-tuned responses are related to the responses of early visual cortex, which monotonically increase with event duration and frequency.
View Article and Find Full Text PDFNeurosci Biobehav Rev
August 2022
Subitizing is the fast and accurate enumeration of small sets. Whether attention is necessary for subitizing remains controversial considering (1) subitizing is claimed to be "pre-attentive", and (2) existing experimental methods and results are inconsistent. To determine whether manipulations to attention demonstratively affect subitizing, the current study comprises a systematic review and meta-analysis.
View Article and Find Full Text PDFPerception of sub-second auditory event timing supports multisensory integration, and speech and music perception and production. Neural populations tuned for the timing (duration and rate) of visual events were recently described in several human extrastriate visual areas. Here we ask whether the brain also contains neural populations tuned for auditory event timing, and whether these are shared with visual timing.
View Article and Find Full Text PDFHuman early visual cortex response amplitudes monotonically increase with numerosity (object number), regardless of object size and spacing. However, numerosity is typically considered a high-level visual or cognitive feature, while early visual responses follow image contrast in the spatial frequency domain. We find that, at fixed contrast, aggregate Fourier power (at all orientations and spatial frequencies) follows numerosity closely but nonlinearly with little effect of object size, spacing or shape.
View Article and Find Full Text PDFThe representation of number symbols is assumed to be unique, and not shared with other ordinal sequences. However, little research has examined if this is the case, or whether properties of symbols (such as spatial complexity) affect ordinal learning. Two studies were conducted to investigate if the property of spatial complexity affects learning ordinal sequences.
View Article and Find Full Text PDFAccurately timing sub-second sensory events is crucial when perceiving our dynamic world. This ability allows complex human behaviors that require timing-dependent multisensory integration and action planning. Such behaviors include perception and performance of speech, music, driving, and many sports.
View Article and Find Full Text PDFBrain regions involved in saccadic eye movements partially overlap with a frontoparietal network implicated in encoding numerosities. Eye movement patterns may plausibly reflect strategic scanning behaviours to resolve the open-ended task of efficiently enumerating visual arrays. If so, these patterns may help explain individual differences in enumeration acuity in terms of well-understood visual attention mechanisms.
View Article and Find Full Text PDFWe assessed the degree to which the variability in the time children took to solve single digit addition (SDA) problems longitudinally, predicted their ability to solve more complex mental addition problems. Beginning at 5 years, 164 children completed a 12-item SDA test on four occasions over 6 years. We also assessed their (1) digit span, visuospatial working memory, and non-verbal IQ, and (2) the speed with which they named single numbers and letters, as well the speed enumerating one to three dots as a measure of subitizing ability.
View Article and Find Full Text PDFDifferent math indices can be used to assess math potential at school entry. We evaluated whether standardized math achievement (TEMA-2 performance), core number abilities (dot enumeration, symbolic magnitude comparison), non-verbal intelligence (NVIQ) and visuo-spatial working memory (VSWM), in combination or separately, predicted mental addition problem solving speed over time. We assessed 267 children's TEMA-2, magnitude comparison, dot enumeration, and VSWM abilities at school entry (5 years) and NVIQ at 8 years.
View Article and Find Full Text PDFWe habitually move our eyes when we enumerate sets of objects. It remains unclear whether saccades are directed for numerosity processing as distinct from object-oriented visual processing (e.g.
View Article and Find Full Text PDFWe use a latent difference score (LDS) model to examine changes in young children's number-line (NL) error signatures (errors marking numbers on a NL) over 18 months. A LDS model (1) overcomes some of the inference limitations of analytic models used in previous research, and in particular (2) provides a more reliable test of hypotheses about the meaning and significance of changes in NL error signatures over time and task. The NL error signatures of 217 6-year-olds' (on test occasion one) were assessed three times over 18 months, along with their math ability on two occasions.
View Article and Find Full Text PDF