Publications by authors named "Jacob M Heiling"

Widely documented in animals, behavioural thermoregulation mitigates negative impacts of climate change. Plants experience especially strong thermal variability but evidence for plant behavioural thermoregulation is limited. Along a montane elevation gradient, Argentina anserina flowers warm more in alpine populations than at lower elevation.

View Article and Find Full Text PDF

Thermal environments vary widely across species ranges, establishing the potential for local adaptation of thermal performance optima and tolerance. In the absence of local adaptation, selection should favor mechanisms to meet thermal optima. Floral temperature is a major determinant of reproductive success in angiosperms, yet whether gametic thermal performance shows signatures of local adaptation across temperature gradients, and how variation in gametic thermal performance influences floral evolution, is unknown.

View Article and Find Full Text PDF

Premise: Pollen-rewarding plants face two conflicting constraints: They must prevent consumptive emasculation while remaining attractive to pollen-collecting visitors. Small pollen packages (the quantity of pollen available in a single visit) may discourage visitors from grooming (reducing consumptive loss) but may also decrease a plant's attractiveness to pollen-collecting visitors. What package size best balances these two constraints?

Methods: We modeled the joint effects of pollinators' grooming behaviors and package size preferences on the optimal package size (i.

View Article and Find Full Text PDF

Premise: In addition to its role as the male gamete, pollen is often used as a food reward for pollinators. Roughly 20,000 species of angiosperms are strictly pollen-rewarding, providing no other rewards to their pollinators. However, the influence of this strategy on pollinator behavior and plant reproduction is poorly understood, especially relative to the nectar-reward strategy.

View Article and Find Full Text PDF

Floral communities present complex and shifting resource landscapes for flower-foraging animals. Strong similarities among the floral displays of different plant species, paired with high variability in reward distributions across time and space, can weaken correlations between floral signals and reward status. As a result, it should be difficult for foragers to discriminate between rewarding and rewardless flowers.

View Article and Find Full Text PDF

Premise: Optimal defense theory predicts that selection should drive plants to disproportionally allocate resources for herbivore defense to tissues with high fitness values. Because pollen's primary role is the transport of gametes, plants may be expected to defend it from herbivory. However, for many animal-pollinated plants, pollen serves a secondary role as a pollinator reward.

View Article and Find Full Text PDF