Publications by authors named "Jacob L Skytte"

Article Synopsis
  • * The researchers developed a new method called TRISCO, which helps retain RNA signals in cleared organs for better imaging, specifically for whole-brain 3D RNA visualization.
  • * TRISCO effectively preserves RNA integrity, ensures uniform labeling, and enhances tissue transparency, making it a powerful tool for detailed transcriptional spatial analysis at the single-cell level across various organs.
View Article and Find Full Text PDF

Timed feeding drives adipose browning, although the integrative mechanisms for the same remain unclear. Here, we show that twice-a-night (TAN) feeding generates biphasic oscillations of circulating insulin and leptin, representing their entrainment by timed feeding. Insulin and leptin surges lead to marked cellular, functional, and metabolic remodeling of subcutaneous white adipose tissue (sWAT), resulting in increased energy expenditure.

View Article and Find Full Text PDF

Objectives: There is significant interest in uncovering the mechanisms through which exercise enhances cognition, memory, and mood, and lowers the risk of neurodegenerative diseases. In this study, we utilize forced treadmill running and distance-matched voluntary wheel running, coupled with light sheet 3D brain imaging and c-Fos immunohistochemistry, to generate a comprehensive atlas of exercise-induced brain activation in mice.

Methods: To investigate the effects of exercise on brain activity, we compared whole-brain activation profiles of mice subjected to treadmill running with mice subjected to distance-matched wheel running.

View Article and Find Full Text PDF

Overfeeding triggers homeostatic compensatory mechanisms that counteract weight gain. Here, we show that both lean and diet-induced obese (DIO) male mice exhibit a potent and prolonged inhibition of voluntary food intake following overfeeding-induced weight gain. We reveal that FGF21 is dispensable for this defense against weight gain.

View Article and Find Full Text PDF

Peptide-based drug development for CNS disorders is challenged by poor blood-brain barrier (BBB) penetrability of peptides. While acylation protractions (lipidation) have been successfully applied to increase circulating half-life of therapeutic peptides, little is known about the CNS accessibility of lipidated peptide drugs. Light-sheet fluorescence microscopy (LSFM) has emerged as a powerful method to visualize whole-brain 3D distribution of fluorescently labelled therapeutic peptides at single-cell resolution.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) and light-sheet fluorescence microscopy (LSFM) are technologies that enable non-disruptive 3-dimensional imaging of whole mouse brains. A combination of complementary information from both modalities is desirable for studying neuroscience in general, disease progression and drug efficacy. Although both technologies rely on atlas mapping for quantitative analyses, the translation of LSFM recorded data to MRI templates has been complicated by the morphological changes inflicted by tissue clearing and the enormous size of the raw data sets.

View Article and Find Full Text PDF

Hypertension is a critical comorbidity for progression of diabetic kidney disease (DKD). To facilitate the development of novel therapeutic interventions with the potential to control disease progression, there is a need to establish translational animal models that predict treatment effects in human DKD. The present study aimed to characterize renal disease and outcomes of standard of medical care in a model of advanced DKD facilitated by adeno-associated virus (AAV)-mediated renin overexpression in uninephrectomized (UNx) mice.

View Article and Find Full Text PDF

The pancreatic hormone amylin plays a central role in regulating energy homeostasis and glycaemic control by stimulating satiation and reducing food reward, making amylin receptor agonists attractive for the treatment of metabolic diseases. Amylin receptors consist of heterodimerized complexes of the calcitonin receptor and receptor-activity modifying proteins subtype 1-3 (RAMP1-3). Neuronal activation in response to amylin dosing has been well characterized, but only in selected regions expressing high levels of RAMPs.

View Article and Find Full Text PDF

Angiotensin converting enzyme inhibitors, among them captopril, improve survival following myocardial infarction (MI). The mechanisms of captopril action remain inadequately understood due to its diverse effects on multiple signalling pathways at different time periods following MI. Here we aimed to establish the role of captopril in late-stage post-MI remodelling.

View Article and Find Full Text PDF

Objective: The development of effective anti-obesity therapeutics relies heavily on the ability to target specific brain homeostatic and hedonic mechanisms controlling body weight. To obtain further insight into neurocircuits recruited by anti-obesity drug treatment, the present study aimed to determine whole-brain activation signatures of six different weight-lowering drug classes.

Methods: Chow-fed C57BL/6J mice (n = 8 per group) received acute treatment with lorcaserin (7 mg/kg; i.

View Article and Find Full Text PDF

In recent years, the combination of whole-brain immunolabelling, light sheet fluorescence microscopy (LSFM) and subsequent registration of data with a common reference atlas, has enabled 3D visualization and quantification of fluorescent markers or tracers in the adult mouse brain. Today, the common coordinate framework version 3 developed by the Allen's Institute of Brain Science (AIBS CCFv3), is widely used as the standard brain atlas for registration of LSFM data. However, the AIBS CCFv3 is based on histological processing and imaging modalities different from those used for LSFM imaging and consequently, the data differ in both tissue contrast and morphology.

View Article and Find Full Text PDF

Background: Glomerular hypertrophy is a hallmark of kidney injury in metabolically induced renal diseases such as obesity-associated glomerulopathies and diabetic nephropathy (DN).

Methods: Using light sheet fluorescent microscopy (LSFM) and 3D image analysis, we tested algorithms for automated and unbiased quantification of total glomerular numbers and individual glomerular volume in the uninephrectomized (UNx) db/db mouse model of DN.

Results: At 6 weeks after surgery, db/db and UNx db/db mice showed increased urine albumin-to-creatinine ratio (ACR) compared with db/+ control mice.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a basal ganglia movement disorder characterized by progressive degeneration of the nigrostriatal dopaminergic system. Immunohistochemical methods have been widely used for characterization of dopaminergic neuronal injury in animal models of PD, including the MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model. However, conventional immunohistochemical techniques applied to tissue sections have inherent limitations with respect to loss of 3D resolution, yielding insufficient information on the architecture of the dopaminergic system.

View Article and Find Full Text PDF

To effectively promote the industrial utilization of cocoyam () roots for enhanced food sustainability and security, there is a need to study their molecular, mechanical and physicochemical properties in detail. The physicochemical and textural characteristics of the red and white varieties of cocoyam roots were thus analysed by low field nuclear magnetic resonance relaxometry, multispectral imaging, uniaxial compression testing, and relevant physicochemical analysis in the current study. Both varieties had similar dry matter content, as well as physical and mechanical properties.

View Article and Find Full Text PDF

The quality of a dairy product is largely determined by its microstructure which also affects its optical properties. Consequently, an assessment of the optical properties during production may be part of a feedback system for ensuring the quality of the production process. This paper presents a novel camera-based measurement technique that enables robust quantification of a wide range of reduced scattering coefficients and absorption coefficients.

View Article and Find Full Text PDF

The microstructure of protein networks in yogurts defines important physical properties of the yogurt and hereby partly its quality. Imaging this protein network using confocal scanning laser microscopy (CSLM) has shown good results, and CSLM has become a standard measuring technique for fermented dairy products. When studying such networks, hundreds of images can be obtained, and here image analysis methods are essential for using the images in statistical analysis.

View Article and Find Full Text PDF