Transition metal single-atom catalysts (SACs) in uniform carbon nanospheres have gained tremendous interest as electrocatalysts owing to their low cost, high activity, and excellent selectivity. However, their preparation typically involves complicated multistep processes that are not practical for industrial use. Herein, we report a facile one-pot method to produce atomically isolated metal atoms with high loadings in uniform carbon nanospheres without any templates or postsynthesis modifications.
View Article and Find Full Text PDFWe report a robust method for the facile synthesis of N-doped carbon nanospheres with uniform and tunable sizes. Instead of involving a surfactant or other templates, this synthesis relies on the incorporation of ethylenediaminetetraacetic acid (EDTA) into the emulsion droplets of phenolic resin oligomers. The EDTA provides a high density of surface charges to effectively increase the electrostatic repulsion between the droplets and thereby prevent them from coalescing into irregular structures during polymerization-induced hardening.
View Article and Find Full Text PDF