Background: Clinical Ethics Consultations (CECs) are used by healthcare systems to offer healthcare practitioners a structured level of support to approach ethical questions. The objective of this study was to detail the elements of surveyed CECs and offer guidance in the approach to future ethics consultations at a regional healthcare system.
Methods: This cohort study has a qualitative and quantitative retrospective approach, surveying ethics consultations through the dates of 4/27/22 to 4/26/24.
Wound therapies are capable of modulating the complex molecular signaling profile of tissue regeneration. However traditional, bulk tissue analysis results in nonspecific expressional profiles and diluted signaling that lacks temporal-spatial information. An acute incisional porcine wound model was developed in the context of negative pressure wound therapy (NPWT).
View Article and Find Full Text PDFBackground: The secretome of adipose-derived mesenchymal stem cells (ASCs) offers a unique approach to understanding and treating wounds, including the critical process of epidermal regeneration orchestrated by keratinocytes. However, 2D culture techniques drastically alter the secretory dynamics of ASCs, which has led to ambiguity in understanding which secreted compounds (e.g.
View Article and Find Full Text PDFIntroduction: Wound healing consists of a dynamic series of events that are highly dependent on paracrine factors for proper progression through the phases of wound healing. Inappropriate progression through the phases is associated with insufficient epidermal regeneration (i.e.
View Article and Find Full Text PDFMesenchymal stem/stromal cells (MSCs) are a heterogenous population of multipotent and highly secretory cells currently being investigated in the field of wound healing for their ability to augment tissue responses. The adaptive response of MSC populations to the rigid substrate of current 2D culture systems has been considered to result in a deterioration of regenerative 'stem-like' properties. In this study, we characterise how the improved culture of adipose-derived mesenchymal stem cells (ASCs) within a tissue-mimetic 3D hydrogel system, that is mechanically similar to native adipose tissue, enhances their regenerative capabilities.
View Article and Find Full Text PDFTo compare the physiological behavior of mesenchymal stem/stromal cells (MSCs) within an expandable tissue-mimetic 3D system relative to expansion in a traditional 2D system. Adipose-derived MSCs (ASCs) were continuously cultured for 6 weeks on either 2D culture plastic or in a 3D hydrogel system that eliminated subculturing. ASCs were assessed for senescence, 'stem-like' MSC markers, and ability for their secretome to augment a secondary cell population.
View Article and Find Full Text PDFWound healing is a dynamic series of interconnected events with the ultimate goal of promoting neotissue formation and restoration of anatomical function. Yet, the complexity of wound healing can often result in development of complex, chronic wounds, which currently results in a significant strain and burden to our healthcare system. The advancement of new and effective wound care therapies remains a critical issue, with the current therapeutic modalities often remaining inadequate.
View Article and Find Full Text PDFElectrospinning is a technique used to fabricate nano-/microfiber scaffolds for tissue engineering applications. However, a major limitation of electrospun scaffolds is the high packing density of fibers that leads to poor cellular infiltration. Thus, incorporation of a water soluble sacrificial porogen, polyethylene oxide (PEO), was utilized to fine-tune the porous fraction of the scaffolds and decrease fiber packing density.
View Article and Find Full Text PDFNegative pressure wound therapy (NPWT) is used clinically to promote tissue formation and wound closure. In this study, a porcine wound model was used to further investigate the mechanisms as to how NPWT modulates wound healing via utilization of a form of NPWT called the vacuum-assisted closure. To observe the effect of NPWT more accurately, non-NPWT control wounds containing GranuFoam™ dressings, without vacuum exposure, were utilized.
View Article and Find Full Text PDFEmulsion electrospinning is a versatile technique used to create fibrous meshes for applications in drug delivery and tissue engineering. In this study, the effects of surfactant and increasing internal phase volume fraction on emulsion electrospun fiber morphology were investigated. The fiber diameter, surface topography, internal architecture, mesh hydrophobicity, and fiber volume fraction were all characterized and the resulting effects on model drug release and cell response were determined.
View Article and Find Full Text PDFA tissue engineered vessel has the potential to provide an alternative small diameter vascular graft for patients with cardiovascular disease in need of surgical revascularization. In this study, a polyglycolic acid (PGA) electrospun scaffold seeded with human dermal fibroblasts was stimulated with circumferential mechanical stretch by a pulsatile perfusion system. The PGA scaffold was fabricated using a custom electrospinning set-up to co-electrospray a sacrificial polyethylene oxide microparticle to increase pore size and bulk porosity.
View Article and Find Full Text PDFElectrospinning is a fabrication technique to generate three dimensional scaffolds with a fiber structure that imitates extracellular matrix for tissue engineering constructs. The versatile characteristics of the electrospinning process yields designer scaffolds made of biodegradable polymers or natural proteins with controllable fiber diameters, biodegradation, and mechanical properties. A limitation of conventional electrospun scaffolds is the dense fiber packing with low porosity that leads to poor cell infiltration.
View Article and Find Full Text PDFSchwannomas are benign soft-tissue tumors that arise from peripheral nerve sheaths throughout the body and are commonly encountered in patients with neurofibromatosis Type 2. The vast majority of schwannomas are benign, with rare cases of malignant transformation reported. In this pictorial review, we discuss the magnetic resonance imaging (MRI) appearance of schwannomas by demonstrating a collection of tumors from different parts of the body that exhibit similar MRI characteristics.
View Article and Find Full Text PDFThe newly purified extracellular polysaccharides (exopolysaccharides) from Parachlorella kessleri (PCEPS) were evaluated on their antitumor and immunomodulatory effects in cell culture and mouse colon carcinoma peritoneal dissemination model. In two-dimensional cell culture, the PCEPS treatment inhibited cell growth of both murine and human colon carcinoma cells in a dose- and time-dependent manner. In contrast, the growth of mouse splenocytes (SPLs) and bone marrow cells (BMCs) were stimulated by the treatment with PCEPS.
View Article and Find Full Text PDFBackground: ADAM12 is upregulated in human breast cancers and is a predictor of chemoresistance in estrogen receptor-negative tumors. ADAM12 is induced during epithelial-to-mesenchymal transition, a feature associated with claudin-low breast tumors, which are enriched in cancer stem cell (CSC) markers. It is currently unknown whether ADAM12 plays an active role in promoting the CSC phenotype in breast cancer cells.
View Article and Find Full Text PDF1,2,3,4-Diepoxybutane (DEB) is a prominent carcinogenic metabolite of 1,3-butadiene (1,3-BD), an important industrial chemical and an environmental pollutant found in cigarette smoke and automobile exhaust. DEB is capable of inducing a variety of genotoxic effects, including point mutations, large deletions, and chromosomal aberrations. The mutagenicity and carcinogenicity of DEB are thought to result from its ability to form bifunctional DNA-DNA adducts by sequentially alkylating two nucleobases within the DNA double helix.
View Article and Find Full Text PDF