Publications by authors named "Jacob Hamilton"

Autoimmune destruction of pancreatic β cells results in type 1 diabetes (T1D), with pancreatic immune infiltrate representing a key feature in this process. Studies of human T1D immunobiology have predominantly focused on circulating immune cells in the blood, while mouse models suggest diabetogenic lymphocytes primarily reside in pancreas-draining lymph nodes (pLN). A comprehensive study of immune cells in human T1D was conducted using pancreas draining lymphatic tissues, including pLN and mesenteric lymph nodes, and the spleen from non-diabetic control, β cell autoantibody positive non-diabetic (AAb+), and T1D organ donors using complementary approaches of high parameter flow cytometry and CITEseq.

View Article and Find Full Text PDF

Patients with B-cell lymphomas have altered cellular components of vaccine responses due to malignancy and therapy, and the optimal timing of vaccination relative to therapy remains unknown. Severe acute respiratory syndrome coronavirus 2 vaccines created an opportunity for new insights in vaccine timing because patients were challenged with a novel antigen across multiple phases of treatment. We studied serologic messenger RNA vaccine response in retrospective and prospective cohorts with lymphoma and chronic lymphocytic leukemia, paired with clinical and research immune parameters.

View Article and Find Full Text PDF

Actinobacteria is an ancient phylum of Gram-positive bacteria with a characteristic high GC content to their DNA. The ActinoBase Wiki is focused on the filamentous actinobacteria, such as species, and the techniques and growth conditions used to study them. These organisms are studied because of their complex developmental life cycles and diverse specialised metabolism which produces many of the antibiotics currently used in the clinic.

View Article and Find Full Text PDF

Aim: Our primary goal was to evaluate safety of a new emergency medical services (EMS) protocol directing non-transport of low-acuity patients during the COVID-19 pandemic.

Methods: We performed a retrospective cohort analysis of all patients in Marion County, Indiana, from March 23, 2020 to May 25, 2020 for whom a novel non-transport protocol was used by EMS for patients with low-acuity COVID-19 symptoms. We assessed paramedic compliance with the protocol to determine numbers and types of deviations.

View Article and Find Full Text PDF

We examined antibody and memory B cell responses longitudinally for ∼9-10 months after primary 2-dose SARS-CoV-2 mRNA vaccination and 3 months after a 3rd dose. Antibody decay stabilized between 6 and 9 months, and antibody quality continued to improve for at least 9 months after 2-dose vaccination. Spike- and RBD-specific memory B cells remained durable over time, and 40%-50% of RBD-specific memory B cells simultaneously bound the Alpha, Beta, Delta, and Omicron variants.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how mRNA vaccines influence antibody and memory B cell responses over time after the initial two doses and a subsequent third dose.
  • Findings show that antibody levels stabilize around 6-9 months after the second dose, while their quality continues to improve, and memory B cells remain stable and effective against multiple variants.
  • The research indicates that pre-3rd dose memory B cell levels can enhance antibody levels after vaccination, but high existing antibody levels may hinder further immune response enhancements from additional doses.
View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied how long the body remembers the COVID-19 vaccine effects after people got the mRNA shot.
  • They found that while the antibodies (the fighters against the virus) went down over time, most people still had some detectable antibodies after 6 months.
  • The vaccines also helped create strong memory cells that can recognize different virus versions, showing that the body has good defenses against COVID-19 for at least 6 months after getting vaccinated.
View Article and Find Full Text PDF

SARS-CoV-2 mRNA vaccines have shown remarkable efficacy, especially in preventing severe illness and hospitalization. However, the emergence of several variants of concern and reports of declining antibody levels have raised uncertainty about the durability of immune memory following vaccination. In this study, we longitudinally profiled both antibody and cellular immune responses in SARS-CoV-2 naïve and recovered individuals from pre-vaccine baseline to 6 months post-mRNA vaccination.

View Article and Find Full Text PDF

SARS-CoV-2 mRNA vaccines have shown remarkable clinical efficacy, but questions remain about the nature and kinetics of T cell priming. We performed longitudinal antigen-specific T cell analyses on healthy SARS-CoV-2-naive and recovered individuals prior to and following mRNA prime and boost vaccination. Vaccination induced rapid antigen-specific CD4 T cell responses in naive subjects after the first dose, whereas CD8 T cell responses developed gradually and were variable in magnitude.

View Article and Find Full Text PDF

Novel mRNA vaccines for SARS-CoV-2 have been authorized for emergency use. Despite their efficacy in clinical trials, data on mRNA vaccine-induced immune responses are mostly limited to serological analyses. Here, we interrogated antibody and antigen-specific memory B cells over time in 33 SARS-CoV-2 naïve and 11 SARS-CoV-2 recovered subjects.

View Article and Find Full Text PDF

Novel mRNA vaccines for SARS-CoV2 have been authorized for emergency use and are currently being administered to millions of individuals worldwide. Despite their efficacy in clinical trials, there is limited data on vaccine-induced immune responses in individuals with a prior SARS-CoV2 infection compared to SARS-CoV2 naïve subjects. Moreover, how mRNA vaccines impact the development of antibodies as well as memory B cells in COVID-19 experienced versus COVID-19 naïve subjects remains poorly understood.

View Article and Find Full Text PDF

Social withdrawal and agitation/aggression are common behavioral and psychological symptoms of dementia presented by Alzheimer's disease (AD) patients, with males exhibiting more aggressive behaviors than females. Some transgenic mouse models of AD also exhibit social withdrawal and aggression, but many of these models only recapitulate the early stages of the disease. By comparison, the 5xFAD mouse model of AD exhibits rapid, progressive neurodegeneration, and is suitable for modeling cognitive and behavioral deficits at early, mid-, and late-stage disease progression.

View Article and Find Full Text PDF

Mammalian meiosis is a dynamic developmental process that occurs in germ cells and can be studied and characterized. Using a method to spread nuclei on the surface of slides (rather than dropping them from a height), we demonstrate an optimized technique on mouse spermatocytes that was first described in 1997. This method is widely used in laboratories to study mammalian meiosis because it yields a plethora of high quality nuclei undergoing substages of prophase I.

View Article and Find Full Text PDF