Publications by authors named "Jacob Gubbens"

The explosive increase in genome sequencing and the advances in bioinformatic tools have revolutionized the rationale for natural product discovery from actinomycetes. In particular, this has revealed that actinomycete genomes contain numerous orphan gene clusters that have the potential to specify many yet unknown bioactive specialized metabolites, representing a huge unexploited pool of chemical diversity. Here, we describe the discovery of a novel group of catecholate-hydroxamate siderophores termed qinichelins (2-5) from Streptomyces sp.

View Article and Find Full Text PDF

Actinomycetes are a major source of antimicrobials, anticancer compounds, and other medically important products, and their genomes harbor extensive biosynthetic potential. Major challenges in the screening of these microorganisms are to activate the expression of cryptic biosynthetic gene clusters and the development of technologies for efficient dereplication of known molecules. Here we report the identification of a previously unidentified isatin-type antibiotic produced by Streptomyces sp.

View Article and Find Full Text PDF

Streptomycetes produce a wealth of natural products, including over half of all known antibiotics. It was previously demonstrated that N-acetylglucosamine and secondary metabolism are closely entwined in streptomycetes. Here we show that DNA recognition by the N-acetylglucosamine-responsive regulator DasR is growth-phase dependent, and that DasR can bind to sites in the S.

View Article and Find Full Text PDF

Information on gene clusters for natural product biosynthesis is accumulating rapidly because of the current boom of available genome sequencing data. However, linking a natural product to a specific gene cluster remains challenging. Here, we present a widely applicable strategy for the identification of gene clusters for specific natural products, which we name natural product proteomining.

View Article and Find Full Text PDF

Activity-based protein profiling (ABPP) is a functional proteomics technique for directly monitoring the expression of active enzymes in cell extracts and living cells. The technique relies on irreversible inhibitors equipped with reactive groups (warheads) that covalently attach to the active site of enzymes and fluorescent or affinity tags for imaging and purification purposes, respectively. Here, a high-throughput and robust protocol for high-resolution quantitative activity-based proteasome profiling is described.

View Article and Find Full Text PDF

Members of the ROK family of proteins are mostly transcriptional regulators and kinases that generally relate to the control of primary metabolism, whereby its member glucose kinase acts as the central control protein in carbon control in Streptomyces. Here, we show that deletion of SCO6008 (rok7B7) strongly affects carbon catabolite repression (CCR), growth, and antibiotic production in Streptomyces coelicolor. Deletion of SCO7543 also affected antibiotic production, while no major changes were observed after deletion of the rok family genes SCO0794, SCO1060, SCO2846, SCO6566, or SCO6600.

View Article and Find Full Text PDF

Members of the soil-dwelling prokaryotic genus Streptomyces are indispensable for the recycling of complex polysaccharides, and produce a wide range of natural products. Nutrient availability is a major determinant for the switch to development and antibiotic production in streptomycetes. Carbon catabolite repression (CCR), a main signalling pathway underlying this phenomenon, was so far considered fully dependent on the glycolytic enzyme glucose kinase (Glk).

View Article and Find Full Text PDF

Streptomycetes are proficient producers of enzymes and antibiotics. When grown in bioreactors, these filamentous microorganisms form mycelial pellets that consist of interconnected hyphae. We here employed a flow cytometry approach designed for large particles (COPAS) and demonstrate that liquid-grown Streptomyces cultures consist of two distinct populations of pellets.

View Article and Find Full Text PDF

Amber suppressor tRNAs are widely used to incorporate nonnatural amino acids into proteins to serve as probes of structure, environment, and function. The utility of this approach would be greatly enhanced if multiple probes could be simultaneously incorporated at different locations in the same protein without other modifications. Toward this end, we have developed amber, opal, and ochre suppressor tRNAs derived from Escherichia coli, and yeast tRNA(Cys) that incorporate a chemically modified cysteine residue with high selectivity at the cognate UAG, UGA, and UAA stop codons in an in vitro translation system.

View Article and Find Full Text PDF

Photoactivatable lipid analogues are uniquely suited for the detection of lipid-protein interactions in biological membranes. Based on photocrosslinking, new methodology has been developed for the proteome-wide detection of lipid-protein interactions. Bifunctional lipid analogues containing a tag for click chemistry in addition to the photoactivatable moiety enable the enrichment of the crosslinked proteins that is required for subsequent identification by mass spectrometry.

View Article and Find Full Text PDF

New lipid analogs mimicking the abundant membrane phospholipid phosphatidylcholine were developed to photocrosslink proteins interacting with phospholipid headgroups at the membrane interface. In addition to either a phenylazide or benzophenone photoactivatable moiety attached to the headgroup, the lipid analogs contained azides attached as baits to the acyl chains. After photocrosslinking in situ in the biomembrane, these baits were used for the attachment of a fluorescent tetramethylrhodamine-alkyne conjugate or a biotin-alkyne conjugate using click chemistry, allowing for the selective detection and purification of crosslink products, respectively.

View Article and Find Full Text PDF

Previously, a 2D gel electrophoresis approach was developed for the Escherichia coli inner membrane, which detects membrane protein complexes that are stable in sodium dodecyl sulfate (SDS) at room temperature, and dissociate under the influence of trifluoroethanol [R. E. Spelbrink et al.

View Article and Find Full Text PDF

To analyze proteins interacting at the membrane interface, a phospholipid analogue was used with a photoactivatable headgroup (ASA-DLPE, N-(4-azidosalicylamidyl)-1,2-dilauroyl-sn-glycero-3-phosphoethanolamine) for selective cross-linking. The peripheral membrane protein cytochrome c from the inner mitochondrial membrane was rendered carbonate wash-resistant by cross-linking to ASA-DLPE in a model membrane system, validating our approach. Cross-link products of cytochrome c and its precursor apocytochrome c were demonstrated by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and were specifically detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), taking advantage of the intrinsic UV absorbance of the cross-linker.

View Article and Find Full Text PDF

To study the consequences of depleting the major membrane phospholipid phosphatidylcholine (PC), exponentially growing cells of a yeast cho2opi3 double deletion mutant were transferred from medium containing choline to choline-free medium. Cell growth did not cease until the PC level had dropped below 2% of total phospholipids after four to five generations. Increasing contents of phosphatidylethanolamine (PE) and phosphatidylinositol made up for the loss of PC.

View Article and Find Full Text PDF

Endoplasmic reticulum oxidoreductases (Eros) are essential for the formation of disulfide bonds. Understanding disulfide bond catalysis in mammals is important because of the involvement of protein misfolding in conditions such as diabetes, arthritis, cancer, and aging. Mammals express two related Ero proteins, Ero1alpha and Ero1beta.

View Article and Find Full Text PDF