With advancements in artificial intelligence (AI) dominating the headlines, diagnostic imaging radiology is no exception to the accelerating role that AI is playing in today's technology landscape. The number of AI-driven radiology diagnostic imaging applications (digital diagnostics) that are both commercially available and in-development is rapidly expanding as are the potential benefits these tools can deliver for patients and providers alike. Healthcare providers seeking to harness the potential benefits of digital diagnostics may consider evaluating these tools and their corresponding use cases in a systematic and structured manner to ensure optimal capital deployment, resource utilization, and, ultimately, patient outcomes-or clinical utility.
View Article and Find Full Text PDFRationale: Characterization of Regolith And Trace Economic Resources (CRATER), an Orbitrap™-based laser desorption mass spectrometry instrument designed to conduct high-precision, spatially resolved analyses of planetary materials, is capable of answering outstanding science questions about the Moon's formation and the subsequent processes that have modified its (sub)surface.
Methods: Here, we describe the baseline design of the CRATER flight model, which requires <20 000 cm volume, <10 kg mass, and <60 W peak power. The analytical capabilities and performance metrics of a prototype that meets the full functionality of the flight model are demonstrated.
Patterns (N Y)
September 2023
B factors provide critical insight into protein dynamics. Predicting B factors of an atom in new proteins remains challenging as it is impacted by their neighbors in Euclidean space. Previous learning methods developed have resulted in low Pearson correlation coefficients beyond the training set due to their limited ability to capture the effect of neighboring atoms.
View Article and Find Full Text PDFMussel foot protein 5 (fp5) found in the adhesive byssal plaque of Mediterranean mussel exhibits exceptional underwater adhesion to diverse surfaces to the extent that adhesion strength typically exceeds the cohesive strength of the plaque. While sequence effects such as presence of charged residues, metal ion coordination, and high catechol content have been identified to govern fp5's interaction with surfaces, molecular contributors to its cohesive strength remain to be fully understood. Addressing this issue is critical for designing mussel-inspired sequences for new adhesives and biomaterials enabled by synthetic biology.
View Article and Find Full Text PDFStudies of psychrophilic life on Earth provide chemical clues as to how extraterrestrial life could maintain viability in cryogenic environments. If living systems in ocean worlds ( Enceladus) share a similar set of 3-mer and 4-mer peptides to the psychrophile on Earth, spaceflight technologies and analytical methods need to be developed to detect and sequence these putative biosignatures. We demonstrate that laser desorption mass spectrometry, as implemented by the CORALS spaceflight prototype instrument, enables the detection of protonated peptides, their dimers, and metal adducts.
View Article and Find Full Text PDFLung and breast cancer are the two most common causes of malignant pleural effusion (MPE). MPE diagnosis plays a crucial role in determining staging and therapeutic interventions in these cancers. However, our understanding of the pathogenesis and progression of MPE at the molecular level is limited.
View Article and Find Full Text PDFObjective: Tenofovir disoproxil fumarate (TDF) is a common component of antiretroviral therapy in hepatitis B virus (HBV)-HIV co-infected adults but few studies have evaluated worsening renal function and bone turnover, known effects of TDF.
Methods: Adults from eight North American sites were enrolled in this cohort study. Research assessments were conducted at entry and every 24 weeks for ≤192 weeks.
Helium atom scattering and density-functional theory (DFT) are used to characterize the phonon band structure of the (3 × 1)-O surface reconstruction of Nb(100). Innovative DFT calculations comparing surface phonons of bare Nb(100) to those of the oxide surface show increased resonances for the oxide, especially at higher energies. Calculated dispersion curves align well with experimental results and yield atomic displacements to characterize polarizations.
View Article and Find Full Text PDFIntroduction: The extent to which use of electronic nicotine delivery systems (ENDS) for smoking reduction leads to cigarette abstinence in smokers with no plans to quit smoking is unclear. This exploratory analysis examined the effects of ENDS delivering different amounts of nicotine on cigarette abstinence up to 24-week follow-up, in comparison to placebo or a behavioral substitute.
Methods: This four-arm parallel-group, randomized, placebo-controlled trial took place at two academic medical centers in the United States (Penn State Hershey and Virginia Commonwealth University).
Close-lying dipole-bound and valence-bound states in the nitromethane anion make this molecule an ideal system for studying the coupling between these two electronically different states. In this work, dipole-bound and valence-bound nitromethane anions were generated by Rydberg electron transfer and characterized by anion photoelectron spectroscopy. The presence of the dipole-bound state was demonstrated through its photoelectron spectral signature, i.
View Article and Find Full Text PDFBackground: Patients living in rural areas experience a variety of unmet needs that result in healthcare disparities. The triple threat of rural geography, racial inequities, and older age hinders access to high-quality palliative care (PC) for a significant proportion of Americans. Rural patients with life-limiting illness are at risk of not receiving appropriate palliative care due to a limited specialty workforce, long distances to treatment centers, and limited PC clinical expertise.
View Article and Find Full Text PDFUsing a combination of Rydberg electron transfer and negative ion photoelectron spectroscopy, we revisited an earlier study which, based on several separate pieces of evidence, had concluded that trans- and gauche-succinonitrile can form quadrupole bound anions (QBAs) and dipole bound anions (DBAs), respectively. In the present work, succinonitrile anions were formed by Rydberg electron transfer and interrogated by negative ion photoelectron spectroscopy. The resulting anion photoelectron spectra exhibited distinctive spectral features for both QBA and DBA species in the same spectrum, thereby providing direct spectroscopic confirmation of previous indirect conclusions.
View Article and Find Full Text PDFQuadrupole-bound anions are negative ions in which their excess electrons are loosely bound by long-range electron-quadrupole attractions. Experimental evidence for quadrupole-bound anions has been scarce; until now, only trans-succinonitrile had been experimentally confirmed to form a quadrupole-bound anion. In this study, we present experimental evidence for a new quadrupole-bound anion.
View Article and Find Full Text PDFPhys Rev Lett
October 2017
The separation of isotopes in space and time by gas-surface atomic diffraction is presented as a new means for isotopic enrichment. A supersonic beam of natural abundance neon is scattered from a periodic surface of methyl-terminated silicon, with the ^{20}Ne and ^{22}Ne isotopes scattering into unique diffraction channels. Under the experimental conditions presented in this Letter, a single pass yields an enrichment factor 3.
View Article and Find Full Text PDFWe have analyzed the effect of excess electron attachment on the network of hydrogen bonds in the oxalic acid dimer (OA). The most stable anionic structures may be viewed as complexes of a neutral hydrogenated moiety HOA˙ coordinated to an anionic deprotonated moiety (OA-H). HOA˙ acts as a double proton donor and (OA-H) as a double proton acceptor.
View Article and Find Full Text PDFPurpose: The aim of this study was to evaluate the operational impact of using preloaded intraocular lens (IOL) delivery systems compared with manually loaded IOL delivery processes during routine cataract surgeries.
Methods: Time and motion data, staff and surgery schedules, and cost accounting reports were collected across three sites located in the US, France, and Canada. Time and motion data were collected for manually loaded IOL processes and preloaded IOL delivery systems over four surgery days.
The [Co(Pyridine)(CO2)](-) anionic complex was studied through the combination of photoelectron spectroscopy and density functional theory calculations. This complex was envisioned as a primitive model system for studying CO2 binding to negatively charged sites in metal organic frameworks. The vertical detachment energy (VDE) measured via the photoelectron spectrum is 2.
View Article and Find Full Text PDFThe phenol-phenolate anionic complex was studied in vacuo by negative ion photoelectron spectroscopy using 193 nm photons and by density functional theory (DFT) computations at the ωB97XD/6-311+G(2d,p) level. We characterize the phenol-phenolate anionic complex as a proton-coupled phenolate pair, i.e.
View Article and Find Full Text PDFThe prospect that protons from water may be transferred to N-heterocyclic molecules due to the presence of an excess electron is studied in hydrated azabenzene cluster anions using anion photoelectron spectroscopy and computational chemistry. In the case of s-triazine (C3H3N3), which has a positive adiabatic electron affinity, proton transfer is not energetically favored nor observed experimentally. Heterocyclic rings with only 1 or 2 nitrogen atoms have negative electron affinities, but the addition of solvating water molecules can yield stable negative ions.
View Article and Find Full Text PDFThe singly charged, parent anions of three transition metal, tetraphenyl porphyrins, M(TPP) [Fe(TPP), Mn(TPP), and Ni(TPP)], were studied by negative ion photoelectron spectroscopy. The observed (vertical) transitions from the ground state anions of these porphyrins to the various electronic states of their neutral counterparts were modeled by density functional theory computations. Our experimental and theoretical results were in good agreement.
View Article and Find Full Text PDFWe have studied the (quinoline-CO2)(-) anionic complex by a combination of mass spectrometry, anion photoelectron spectroscopy, and density functional theory calculations. The (quinoline-CO2)(-) anionic complex has much in common with previously studied (N-heterocycle-CO2)(-) anionic complexes both in terms of geometric structure and covalent bonding character. Unlike the previously studied N-heterocycles, however, quinoline has a positive electron affinity, and this provided a pathway for determining the binding energy of CO2 in the (quinoline-CO2)(-) anionic complex.
View Article and Find Full Text PDFThe stabilization of the pyrimidine anion by the addition of water molecules is studied experimentally using photoelectron spectroscopy of mass-selected hydrated pyrimidine clusters and computationally using quantum-mechanical electronic structure theory. Although the pyrimidine molecular anion is not observed experimentally, the addition of a single water molecule is sufficient to impart a positive electron affinity. The sequential hydration data have been used to extrapolate to -0.
View Article and Find Full Text PDFOur experimental and computational results demonstrate an unusual electrophilicity of oxalic acid, the simplest dicarboxylic acid. The monomer is characterized by an adiabatic electron affinity and electron vertical detachment energy of 0.72 and 1.
View Article and Find Full Text PDF