A free-standing and compact reaction cell for combined in situ/operando x-ray spectroscopy, scattering, and imaging measurements at high pressures and high temperatures is described. The cell permits measurements under realistic operating conditions (up to 50 bar and 1000 °C), under static and flow conditions (up to 100 ml/min), over a wide range of hard x-ray energies, variable detection modes (transmission, fluorescence, and scattering), and at all angles of rotation. An operando XAS, x-ray fluorescence, x-ray computed tomography, and x-ray diffraction computed tomography case study on the reduction of a heterogeneous catalyst is presented to illustrate the performance of the reaction cell.
View Article and Find Full Text PDFJ Synchrotron Radiat
September 2024
Accurate analysis of the rich information contained within X-ray spectra usually calls for detailed electronic structure theory simulations. However, density functional theory (DFT), time-dependent DFT and many-body perturbation theory calculations increasingly require the use of advanced codes running on high-performance computing (HPC) facilities. Consequently, many researchers who would like to augment their experimental work with such simulations are hampered by the compounding of nontrivial knowledge requirements, specialist training and significant time investment.
View Article and Find Full Text PDFThe Dual Imaging and Diffraction (DIAD) beamline at Diamond Light Source is a new dual-beam instrument for full-field imaging/tomography and powder diffraction. This instrument provides the user community with the capability to dynamically image 2D and 3D complex structures and perform phase identification and/or strain mapping using micro-diffraction. The aim is to enable in situ and in operando experiments that require spatially correlated results from both techniques, by providing measurements from the same specimen location quasi-simultaneously.
View Article and Find Full Text PDFThis manuscript presents the current status and technical details of the Spectroscopy Village at Diamond Light Source. The Village is formed of four beamlines: I18, B18, I20-Scanning and I20-EDE. The village provides the UK community with local access to a hard X-ray microprobe, a quick-scanning multi-purpose XAS beamline, a high-intensity beamline for X-ray absorption spectroscopy of dilute samples and X-ray emission spectroscopy, and an energy-dispersive extended X-ray absorption fine-structure beamline.
View Article and Find Full Text PDFIn this paper, we experimentally demonstrate the use of infrared synchrotron radiation (IR-SR) as a broadband source for photothermal near-field infrared spectroscopy. We assess two methods of signal transduction; cantilever resonant thermal expansion and scanning thermal microscopy. By means of rapid mechanical chopping (50-150 kHz), we modulate the IR-SR at rates matching the contact resonance frequencies of atomic force microscope (AFM) cantilevers, allowing us to record interferograms yielding Fourier transform infrared (FT-IR) photothermal absorption spectra of polystyrene and cyanoacrylate films.
View Article and Find Full Text PDFSynchrotron light source facilities worldwide generate terabytes of data in numerous incompatible data formats from a wide range of experiment types. The Data Analysis WorkbeNch (DAWN) was developed to address the challenge of providing a single visualization and analysis platform for data from any synchrotron experiment (including single-crystal and powder diffraction, tomography and spectroscopy), whilst also being sufficiently extensible for new specific use case analysis environments to be incorporated (e.g.
View Article and Find Full Text PDFOver the last few years, significant scientific insight on the effects of chemotherapy drugs at cellular level using synchrotron-based FTIR (S-FTIR) microspectroscopy has been obtained. The work carried out so far has identified spectral differences in cancer cells before and after the addition of drugs. However, this had to account for the following issues.
View Article and Find Full Text PDFAnal Bioanal Chem
February 2013
The study of individual cells with infrared (IR) microspectroscopy often requires living cells to be cultured directly onto a suitable substrate. The surface effect of the specific substrates on the cell growth-viability and associated biochemistry-as well as on the IR analysis-spectral interference and optical artifacts-is all too often ignored. Using the IR beamline, MIRIAM (Diamond Light Source, UK), we show the importance of the substrate used for IR absorption spectroscopy by analyzing two different cell lines cultured on a range of seven optical substrates in both transmission and reflection modes.
View Article and Find Full Text PDFThis study demonstrates the use of standard morphological image processing techniques to reduce the hyperspectral image data of samples, containing discrete particles or domains, to a single average spectrum per particle. The processing is automated and successful even when the particles are in contact. Focal Plane Array, Fourier transform infrared (FTIR) absorbance images of biological cells are used as an example dataset.
View Article and Find Full Text PDFNormal function and physiology of the epidermis is maintained by the regenerative capacity of this tissue via adult stem cells (SCs). However, definitive identifying markers for SCs remain elusive. Infrared (IR) spectroscopy exploits the ability of cellular biomolecules to absorb in the mid-IR region (λ = 2.
View Article and Find Full Text PDFFTIR absorption micro-spectroscopy is a widely used, powerful technique for analysing biological materials. In principle it is a straightforward linear absorption spectroscopy, but it can be affected by artefacts that complicate the interpretation of the data. In this article, artefacts produced by the electric-field standing-wave (EFSW) in micro-reflection-absorption (transflection) spectroscopy are investigated.
View Article and Find Full Text PDFThe technique of drop coating deposition Raman (DCDR) spectroscopy has been shown to be a highly reproducible and sensitive method of obtaining Raman spectra from low concentration protein solutions. This study assesses the ability of DCDR to analyse changes in the relative protein concentrations of aqueous tertiary protein mixtures, with protein levels similar to that found in human tear fluid. The three proteins used to make the mixtures were lysozyme, lactoferrin and albumin.
View Article and Find Full Text PDFA selection of diamondoid hydrocarbons, from adamantane to [121321] heptamantane, have been analysed by multi-wavelength laser Raman spectroscopy. Spectra were assigned using vibrational frequencies and Raman intensities were calculated by employing the B3LYP functional and the split valence basis set of Schafer, Horn and Ahlrichs with polarisation functions on carbon atoms. The variation of the spectra and associated vibrational modes with the structure and symmetry of the molecules are discussed.
View Article and Find Full Text PDF