Publications by authors named "Jacob Enk"

Article Synopsis
  • - Phylogenomic data is transforming insect phylogenetics, with target enrichment being a cost-effective way to gather this data and uncover new insights in insect evolution.
  • - The study focuses on Orthoptera, a diverse insect order that has been slow to adopt phylogenomics, and introduces an Orthoptera-specific target enrichment probe set created from 80 transcriptomes.
  • - This new probe set successfully captured an average of 1037 genetic loci from 36 previously unstudied orthopteran species, demonstrating its usefulness and providing detailed documentation to encourage wider use.
View Article and Find Full Text PDF
Article Synopsis
  • Scientists study old animal bones to learn how people took care of animals a long time ago, but it’s hard because the bones are often broken and there aren’t clear signs of age.
  • *Using a special method called DNA methylation clocks, researchers can figure out how old some ancient animals were when they died.
  • *They also looked at DNA to understand if horses were castrated in the past, which helps reveal more about how people managed animals and their lives a long time ago.
View Article and Find Full Text PDF

Cell-free (cf)DNA signatures are quickly becoming the target of choice for non-invasive screening, diagnosis, treatment and monitoring of human tumors. DNA methylation changes occur early in tumorigenesis and are widespread, making cfDNA methylation an attractive cancer biomarker. Already a proven technology for targeted genome sequencing, hybridization probe capture is emerging as a method for high-throughput targeted methylation profiling suitable to liquid biopsy samples.

View Article and Find Full Text PDF

As genome resources for wheat (Triticum L.) expand at a rapid pace, it is important to update targeted sequencing tools to incorporate improved sequence assemblies and regions of previously unknown significance. Here, we developed an updated regulatory region enrichment capture for wheat and other Triticeae species.

View Article and Find Full Text PDF

Finding, characterizing and monitoring reservoirs for antimicrobial resistance (AMR) is vital to protecting public health. Hybridization capture baits are an accurate, sensitive and cost-effective technique used to enrich and characterize DNA sequences of interest, including antimicrobial resistance genes (ARGs), in complex environmental samples. We demonstrate the continued utility of a set of 19 933 hybridization capture baits designed from the Comprehensive Antibiotic Resistance Database (CARD)v1.

View Article and Find Full Text PDF

Disease resistance (R) genes from wild relatives could be used to engineer broad-spectrum resistance in domesticated crops. We combined association genetics with R gene enrichment sequencing (AgRenSeq) to exploit pan-genome variation in wild diploid wheat and rapidly clone four stem rust resistance genes. AgRenSeq enables R gene cloning in any crop that has a diverse germplasm panel.

View Article and Find Full Text PDF

Dogs were present in the Americas before the arrival of European colonists, but the origin and fate of these precontact dogs are largely unknown. We sequenced 71 mitochondrial and 7 nuclear genomes from ancient North American and Siberian dogs from time frames spanning ~9000 years. Our analysis indicates that American dogs were not derived from North American wolves.

View Article and Find Full Text PDF

is the extinct giant ground sloth named after Charles Darwin, who first collected its remains in South America. We have successfully obtained a high-quality mitochondrial genome at 99-fold coverage using an Illumina shotgun sequencing of a 12 880-year-old bone fragment from Mylodon Cave in Chile. Low level of DNA damage showed that this sample was exceptionally well preserved for an ancient subfossil, probably the result of the dry and cold conditions prevailing within the cave.

View Article and Find Full Text PDF

Near the end of the Pleistocene epoch, populations of the woolly mammoth (Mammuthus primigenius) were distributed across parts of three continents, from western Europe and northern Asia through Beringia to the Atlantic seaboard of North America. Nonetheless, questions about the connectivity and temporal continuity of mammoth populations and species remain unanswered. We use a combination of targeted enrichment and high-throughput sequencing to assemble and interpret a data set of 143 mammoth mitochondrial genomes, sampled from fossils recovered from across their Holarctic range.

View Article and Find Full Text PDF

Pregnancy complications are poorly represented in the archeological record, despite their importance in contemporary and ancient societies. While excavating a Byzantine cemetery in Troy, we discovered calcified abscesses among a woman's remains. Scanning electron microscopy of the tissue revealed 'ghost cells', resulting from dystrophic calcification, which preserved ancient maternal, fetal and bacterial DNA of a severe infection, likely chorioamnionitis.

View Article and Find Full Text PDF

Xenarthra (armadillos, sloths, and anteaters) constitutes one of the four major clades of placental mammals. Despite their phylogenetic distinctiveness in mammals, a reference phylogeny is still lacking for the 31 described species. Here we used Illumina shotgun sequencing to assemble 33 new complete mitochondrial genomes, establishing Xenarthra as the first major placental clade to be fully sequenced at the species level for mitogenomes.

View Article and Find Full Text PDF

The processes leading up to species extinctions are typically characterized by prolonged declines in population size and geographic distribution, followed by a phase in which populations are very small and may be subject to intrinsic threats, including loss of genetic diversity and inbreeding. However, whether such genetic factors have had an impact on species prior to their extinction is unclear; examining this would require a detailed reconstruction of a species' demographic history as well as changes in genome-wide diversity leading up to its extinction. Here, we present high-quality complete genome sequences from two woolly mammoths (Mammuthus primigenius).

View Article and Find Full Text PDF

The present erratum is in regards to our article entitled ‘Ancient DNA and the tropics: a rodent's tale’. We were made aware of problems with some of the ancient sequences submitted to GenBank and conducted a systematic review of all the files used in our study. We discovered that, unfortunately, an incorrect file was sent to GenBank and was also used in some of our downstream analyses.

View Article and Find Full Text PDF

High-throughput sequencing (HTS) has radically altered approaches to human evolutionary research. Recent contributions highlight that HTS is able to reach depths of the human lineage previously thought to be impossible. In this paper, we outline the methodological advances afforded by recent developments in DNA recovery, data output, scalability, speed, and resolution of the current sequencing technology.

View Article and Find Full Text PDF

Most genetic studies of Holocene fauna have been performed with ancient samples from dry and cold regions, in which preservation of fossils is facilitated and molecular damage is reduced. Ancient DNA work from tropical regions has been precluded owing to factors that limit DNA preservation (e.g.

View Article and Find Full Text PDF

Ancient human remains of paleopathological interest typically contain highly degraded DNA in which pathogenic taxa are often minority components, making sequence-based metagenomic characterization costly. Microarrays may hold a potential solution to these challenges, offering a rapid, affordable, and highly informative snapshot of microbial diversity in complex samples without the lengthy analysis and/or high cost associated with high-throughput sequencing. Their versatility is well established for modern clinical specimens, but they have yet to be applied to ancient remains.

View Article and Find Full Text PDF

We report metrics from complete genome capture of nuclear DNA from extinct mammoths using biotinylated RNAs transcribed from an Asian elephant DNA extract. Enrichment of the nuclear genome ranged from 1.06- to 18.

View Article and Find Full Text PDF

Background: Yersinia pestis has caused at least three human plague pandemics. The second (Black Death, 14-17th centuries) and third (19-20th centuries) have been genetically characterised, but there is only a limited understanding of the first pandemic, the Plague of Justinian (6-8th centuries). To address this gap, we sequenced and analysed draft genomes of Y pestis obtained from two individuals who died in the first pandemic.

View Article and Find Full Text PDF

In the 19th century, there were several major cholera pandemics in the Indian subcontinent, Europe, and North America. The causes of these outbreaks and the genomic strain identities remain a mystery. We used targeted high-throughput sequencing to reconstruct the Vibrio cholerae genome from the preserved intestine of a victim of the 1849 cholera outbreak in Philadelphia, part of the second cholera pandemic.

View Article and Find Full Text PDF

Targeted DNA enrichment through hybridization capture (EHC) is rapidly replacing PCR as the method of choice for enrichment prior to genomic resequencing. This is especially true in the case of ancient DNA (aDNA) from long-dead organisms, where targets tend to be highly fragmented and outnumbered by contaminant DNA. However, the behavior of EHC using aDNA has been quite variable, making success difficult to predict and preventing efficient sample equilibration during multiplexed sequencing runs.

View Article and Find Full Text PDF

Background: Late Pleistocene North America hosted at least two divergent and ecologically distinct species of mammoth: the periglacial woolly mammoth (Mammuthus primigenius) and the subglacial Columbian mammoth (Mammuthus columbi). To date, mammoth genetic research has been entirely restricted to woolly mammoths, rendering their genetic evolution difficult to contextualize within broader Pleistocene paleoecology and biogeography. Here, we take an interspecific approach to clarifying mammoth phylogeny by targeting Columbian mammoth remains for mitogenomic sequencing.

View Article and Find Full Text PDF